Matches in SemOpenAlex for { <https://semopenalex.org/work/W2790533863> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2790533863 abstract "Segmentation of organs at risk (OARs) is a key step during the radiation therapy (RT) treatment planning process. Automatic anatomy recognition (AAR) is a recently developed body-wide multiple object segmentation approach, where segmentation is designed as two dichotomous steps: object recognition (or localization) and object delineation. Recognition is the high-level process of determining the whereabouts of an object, and delineation is the meticulous low-level process of precisely indicating the space occupied by an object. This study focuses on recognition. The purpose of this paper is to introduce new features of the AAR-recognition approach (abbreviated as AAR-R from now on) of combining texture and intensity information into the recognition procedure, using the optimal spanning tree to achieve the optimal hierarchy for recognition to minimize recognition errors, and to illustrate recognition performance by using large-scale testing computed tomography (CT) data sets. The data sets pertain to 216 non-serial (planning) and 82 serial (re-planning) studies of head and neck (H&N) cancer patients undergoing radiation therapy, involving a total of ~2600 object samples. Texture property maximum probability of occurrence derived from the co-occurrence matrix was determined to be the best property and is utilized in conjunction with intensity properties in AAR-R. An optimal spanning tree is found in the complete graph whose nodes are individual objects, and then the tree is used as the hierarchy in recognition. Texture information combined with intensity can significantly reduce location error for gland-related objects (parotid and submandibular glands). We also report recognition results by considering image quality, which is a novel concept. AAR-R with new features achieves a location error of less than 4 mm (~1.5 voxels in our studies) for good quality images for both serial and non-serial studies." @default.
- W2790533863 created "2018-03-29" @default.
- W2790533863 creator A5015838477 @default.
- W2790533863 creator A5024350922 @default.
- W2790533863 creator A5026804587 @default.
- W2790533863 creator A5033985142 @default.
- W2790533863 creator A5051995955 @default.
- W2790533863 creator A5062633858 @default.
- W2790533863 creator A5065713856 @default.
- W2790533863 creator A5067536094 @default.
- W2790533863 creator A5069851642 @default.
- W2790533863 creator A5071396392 @default.
- W2790533863 creator A5080030813 @default.
- W2790533863 creator A5081784729 @default.
- W2790533863 date "2018-03-12" @default.
- W2790533863 modified "2023-10-14" @default.
- W2790533863 title "Hierarchical model-based object localization for auto-contouring in head and neck radiation therapy planning" @default.
- W2790533863 cites W1964162596 @default.
- W2790533863 cites W2225435795 @default.
- W2790533863 cites W2593013519 @default.
- W2790533863 cites W4240772283 @default.
- W2790533863 doi "https://doi.org/10.1117/12.2294042" @default.
- W2790533863 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6122859" @default.
- W2790533863 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30190630" @default.
- W2790533863 hasPublicationYear "2018" @default.
- W2790533863 type Work @default.
- W2790533863 sameAs 2790533863 @default.
- W2790533863 citedByCount "10" @default.
- W2790533863 countsByYear W27905338632018 @default.
- W2790533863 countsByYear W27905338632019 @default.
- W2790533863 countsByYear W27905338632020 @default.
- W2790533863 countsByYear W27905338632021 @default.
- W2790533863 countsByYear W27905338632022 @default.
- W2790533863 crossrefType "proceedings-article" @default.
- W2790533863 hasAuthorship W2790533863A5015838477 @default.
- W2790533863 hasAuthorship W2790533863A5024350922 @default.
- W2790533863 hasAuthorship W2790533863A5026804587 @default.
- W2790533863 hasAuthorship W2790533863A5033985142 @default.
- W2790533863 hasAuthorship W2790533863A5051995955 @default.
- W2790533863 hasAuthorship W2790533863A5062633858 @default.
- W2790533863 hasAuthorship W2790533863A5065713856 @default.
- W2790533863 hasAuthorship W2790533863A5067536094 @default.
- W2790533863 hasAuthorship W2790533863A5069851642 @default.
- W2790533863 hasAuthorship W2790533863A5071396392 @default.
- W2790533863 hasAuthorship W2790533863A5080030813 @default.
- W2790533863 hasAuthorship W2790533863A5081784729 @default.
- W2790533863 hasBestOaLocation W27905338632 @default.
- W2790533863 hasConcept C121684516 @default.
- W2790533863 hasConcept C124504099 @default.
- W2790533863 hasConcept C153180895 @default.
- W2790533863 hasConcept C154945302 @default.
- W2790533863 hasConcept C2776151529 @default.
- W2790533863 hasConcept C2779104521 @default.
- W2790533863 hasConcept C2781238097 @default.
- W2790533863 hasConcept C31972630 @default.
- W2790533863 hasConcept C41008148 @default.
- W2790533863 hasConcept C64876066 @default.
- W2790533863 hasConcept C89600930 @default.
- W2790533863 hasConceptScore W2790533863C121684516 @default.
- W2790533863 hasConceptScore W2790533863C124504099 @default.
- W2790533863 hasConceptScore W2790533863C153180895 @default.
- W2790533863 hasConceptScore W2790533863C154945302 @default.
- W2790533863 hasConceptScore W2790533863C2776151529 @default.
- W2790533863 hasConceptScore W2790533863C2779104521 @default.
- W2790533863 hasConceptScore W2790533863C2781238097 @default.
- W2790533863 hasConceptScore W2790533863C31972630 @default.
- W2790533863 hasConceptScore W2790533863C41008148 @default.
- W2790533863 hasConceptScore W2790533863C64876066 @default.
- W2790533863 hasConceptScore W2790533863C89600930 @default.
- W2790533863 hasLocation W27905338631 @default.
- W2790533863 hasLocation W27905338632 @default.
- W2790533863 hasLocation W27905338633 @default.
- W2790533863 hasLocation W27905338634 @default.
- W2790533863 hasOpenAccess W2790533863 @default.
- W2790533863 hasPrimaryLocation W27905338631 @default.
- W2790533863 hasRelatedWork W2007544051 @default.
- W2790533863 hasRelatedWork W2019566805 @default.
- W2790533863 hasRelatedWork W2095705906 @default.
- W2790533863 hasRelatedWork W2200925278 @default.
- W2790533863 hasRelatedWork W2613077666 @default.
- W2790533863 hasRelatedWork W2613186388 @default.
- W2790533863 hasRelatedWork W2732308154 @default.
- W2790533863 hasRelatedWork W2734888972 @default.
- W2790533863 hasRelatedWork W2975200075 @default.
- W2790533863 hasRelatedWork W1967061043 @default.
- W2790533863 isParatext "false" @default.
- W2790533863 isRetracted "false" @default.
- W2790533863 magId "2790533863" @default.
- W2790533863 workType "article" @default.