Matches in SemOpenAlex for { <https://semopenalex.org/work/W2790573495> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2790573495 abstract "Principal Component Analysis (PCA) is the most widely used unsupervised subspace learning method, and lots of its variants have been developed. With so many proposed PCA-like methods, it is still not clear that which features are better or worse for principal components, especially when the data suffers from outliers. To this end, we propose Robust Principal Component Analysis via joint ℓ <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2,1</sub> -norms minimization, which provides new insights into two crucial issues of PCA: feature selection and robustness to outliers. Unlike other PCA-like methods, the proposed method is able to select effective features for reconstruction by using the ℓ <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2,1</sub> -norm regularization term. More specific, we first use a ℓ <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2,1</sub> -norm based transformation matrix to select effective features that can effectively characterize key components (e.g., the eyes and the nose in a face image), and then use an orthogonal transformation matrix to recover the original data from the selected data representation. In this way, the key components can be well recovered by using the effective features selected by a learned transformation matrix. On the other hand, we also impose ℓ <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2,1</sub> -norm on a loss term to select clean samples to recover its same class samples but with outliers. A simple yet effective optimization algorithm is proposed to solve the resulting optimization problem. Experiments on six datasets demonstrate the effectiveness of the proposed method." @default.
- W2790573495 created "2018-03-29" @default.
- W2790573495 creator A5058312907 @default.
- W2790573495 creator A5069054353 @default.
- W2790573495 creator A5081499128 @default.
- W2790573495 date "2017-12-01" @default.
- W2790573495 modified "2023-10-17" @default.
- W2790573495 title "Robust principal component analysis via joint ℓ<inf>2,1</inf>-norms minimization" @default.
- W2790573495 cites W1513013675 @default.
- W2790573495 cites W1682001760 @default.
- W2790573495 cites W1975900269 @default.
- W2790573495 cites W1992633833 @default.
- W2790573495 cites W2007339694 @default.
- W2790573495 cites W2053090063 @default.
- W2790573495 cites W2055254373 @default.
- W2790573495 cites W2060758047 @default.
- W2790573495 cites W2063379935 @default.
- W2790573495 cites W2076363162 @default.
- W2790573495 cites W2081072950 @default.
- W2790573495 cites W2089894294 @default.
- W2790573495 cites W2098693229 @default.
- W2790573495 cites W2129442239 @default.
- W2790573495 cites W2140151376 @default.
- W2790573495 cites W2145962650 @default.
- W2790573495 cites W2155145150 @default.
- W2790573495 cites W2155759509 @default.
- W2790573495 cites W2298605637 @default.
- W2790573495 cites W2400262625 @default.
- W2790573495 cites W2402197802 @default.
- W2790573495 cites W2507470109 @default.
- W2790573495 cites W2522601641 @default.
- W2790573495 cites W2725281289 @default.
- W2790573495 cites W2737362155 @default.
- W2790573495 cites W2963630677 @default.
- W2790573495 doi "https://doi.org/10.1109/spac.2017.8304243" @default.
- W2790573495 hasPublicationYear "2017" @default.
- W2790573495 type Work @default.
- W2790573495 sameAs 2790573495 @default.
- W2790573495 citedByCount "3" @default.
- W2790573495 countsByYear W27905734952018 @default.
- W2790573495 countsByYear W27905734952020 @default.
- W2790573495 crossrefType "proceedings-article" @default.
- W2790573495 hasAuthorship W2790573495A5058312907 @default.
- W2790573495 hasAuthorship W2790573495A5069054353 @default.
- W2790573495 hasAuthorship W2790573495A5081499128 @default.
- W2790573495 hasConcept C104317684 @default.
- W2790573495 hasConcept C147764199 @default.
- W2790573495 hasConcept C153180895 @default.
- W2790573495 hasConcept C154945302 @default.
- W2790573495 hasConcept C185592680 @default.
- W2790573495 hasConcept C199360897 @default.
- W2790573495 hasConcept C27438332 @default.
- W2790573495 hasConcept C32834561 @default.
- W2790573495 hasConcept C41008148 @default.
- W2790573495 hasConcept C55493867 @default.
- W2790573495 hasConcept C63479239 @default.
- W2790573495 hasConcept C79337645 @default.
- W2790573495 hasConceptScore W2790573495C104317684 @default.
- W2790573495 hasConceptScore W2790573495C147764199 @default.
- W2790573495 hasConceptScore W2790573495C153180895 @default.
- W2790573495 hasConceptScore W2790573495C154945302 @default.
- W2790573495 hasConceptScore W2790573495C185592680 @default.
- W2790573495 hasConceptScore W2790573495C199360897 @default.
- W2790573495 hasConceptScore W2790573495C27438332 @default.
- W2790573495 hasConceptScore W2790573495C32834561 @default.
- W2790573495 hasConceptScore W2790573495C41008148 @default.
- W2790573495 hasConceptScore W2790573495C55493867 @default.
- W2790573495 hasConceptScore W2790573495C63479239 @default.
- W2790573495 hasConceptScore W2790573495C79337645 @default.
- W2790573495 hasLocation W27905734951 @default.
- W2790573495 hasOpenAccess W2790573495 @default.
- W2790573495 hasPrimaryLocation W27905734951 @default.
- W2790573495 hasRelatedWork W1608770142 @default.
- W2790573495 hasRelatedWork W2065962751 @default.
- W2790573495 hasRelatedWork W2121787161 @default.
- W2790573495 hasRelatedWork W2122205149 @default.
- W2790573495 hasRelatedWork W2133226654 @default.
- W2790573495 hasRelatedWork W2354332871 @default.
- W2790573495 hasRelatedWork W2367227827 @default.
- W2790573495 hasRelatedWork W2379741605 @default.
- W2790573495 hasRelatedWork W2380927352 @default.
- W2790573495 hasRelatedWork W3178621026 @default.
- W2790573495 isParatext "false" @default.
- W2790573495 isRetracted "false" @default.
- W2790573495 magId "2790573495" @default.
- W2790573495 workType "article" @default.