Matches in SemOpenAlex for { <https://semopenalex.org/work/W2790592899> ?p ?o ?g. }
- W2790592899 endingPage "1" @default.
- W2790592899 startingPage "1" @default.
- W2790592899 abstract "Video-based facial expression recognition has become increasingly important for plenty of applications in the real world. Despite that numerous efforts have been made for the single sequence, how to balance the complex distribution of intra- and interclass variations well between sequences has remained a great difficulty in this area. We propose the adaptive (N+M)-tuplet clusters loss function and optimize it with the softmax loss simultaneously in the training phrase. The variations introduced by personal attributes are alleviated using the similarity measurements of multiple samples in the feature space with many fewer comparison times as conventional deep metric learning approaches, which enables the metric calculations for large data applications (e.g., videos). Both the spatial and temporal relations are well explored by a unified framework that consists of an Inception-ResNet network with long short term memory and the two fully connected layer branches structure. Our proposed method has been evaluated with three well-known databases, and the experimental results show that our method outperforms many state-of-the-art approaches." @default.
- W2790592899 created "2018-03-29" @default.
- W2790592899 creator A5026108994 @default.
- W2790592899 creator A5072105113 @default.
- W2790592899 creator A5088216458 @default.
- W2790592899 creator A5090546750 @default.
- W2790592899 date "2018-02-19" @default.
- W2790592899 modified "2023-10-18" @default.
- W2790592899 title "Adaptive metric learning with deep neural networks for video-based facial expression recognition" @default.
- W2790592899 cites W1006670917 @default.
- W2790592899 cites W1814598697 @default.
- W2790592899 cites W1906634369 @default.
- W2790592899 cites W1909234690 @default.
- W2790592899 cites W1947481528 @default.
- W2790592899 cites W1964470356 @default.
- W2790592899 cites W1971955426 @default.
- W2790592899 cites W1975436731 @default.
- W2790592899 cites W1987231241 @default.
- W2790592899 cites W1989188126 @default.
- W2790592899 cites W2000820603 @default.
- W2790592899 cites W2034821857 @default.
- W2790592899 cites W2064675550 @default.
- W2790592899 cites W2066986622 @default.
- W2790592899 cites W2068908391 @default.
- W2790592899 cites W2075933837 @default.
- W2790592899 cites W2097117768 @default.
- W2790592899 cites W2098805611 @default.
- W2790592899 cites W2103886445 @default.
- W2790592899 cites W2103943262 @default.
- W2790592899 cites W2129106196 @default.
- W2790592899 cites W2145310492 @default.
- W2790592899 cites W2157092301 @default.
- W2790592899 cites W2157364932 @default.
- W2790592899 cites W2161634108 @default.
- W2790592899 cites W2183341477 @default.
- W2790592899 cites W2194775991 @default.
- W2790592899 cites W2198512331 @default.
- W2790592899 cites W2244142460 @default.
- W2790592899 cites W2246249023 @default.
- W2790592899 cites W2391561377 @default.
- W2790592899 cites W2470322391 @default.
- W2790592899 cites W2480418144 @default.
- W2790592899 cites W2483499652 @default.
- W2790592899 cites W2546875627 @default.
- W2790592899 cites W2737398044 @default.
- W2790592899 cites W2953119964 @default.
- W2790592899 cites W2963925503 @default.
- W2790592899 cites W2964350391 @default.
- W2790592899 doi "https://doi.org/10.1117/1.jei.27.1.013022" @default.
- W2790592899 hasPublicationYear "2018" @default.
- W2790592899 type Work @default.
- W2790592899 sameAs 2790592899 @default.
- W2790592899 citedByCount "32" @default.
- W2790592899 countsByYear W27905928992018 @default.
- W2790592899 countsByYear W27905928992019 @default.
- W2790592899 countsByYear W27905928992020 @default.
- W2790592899 countsByYear W27905928992021 @default.
- W2790592899 countsByYear W27905928992022 @default.
- W2790592899 countsByYear W27905928992023 @default.
- W2790592899 crossrefType "journal-article" @default.
- W2790592899 hasAuthorship W2790592899A5026108994 @default.
- W2790592899 hasAuthorship W2790592899A5072105113 @default.
- W2790592899 hasAuthorship W2790592899A5088216458 @default.
- W2790592899 hasAuthorship W2790592899A5090546750 @default.
- W2790592899 hasConcept C103278499 @default.
- W2790592899 hasConcept C108583219 @default.
- W2790592899 hasConcept C115961682 @default.
- W2790592899 hasConcept C119857082 @default.
- W2790592899 hasConcept C138885662 @default.
- W2790592899 hasConcept C153180895 @default.
- W2790592899 hasConcept C154945302 @default.
- W2790592899 hasConcept C162324750 @default.
- W2790592899 hasConcept C176217482 @default.
- W2790592899 hasConcept C188441871 @default.
- W2790592899 hasConcept C195704467 @default.
- W2790592899 hasConcept C21547014 @default.
- W2790592899 hasConcept C2776401178 @default.
- W2790592899 hasConcept C41008148 @default.
- W2790592899 hasConcept C41895202 @default.
- W2790592899 hasConcept C50644808 @default.
- W2790592899 hasConcept C59404180 @default.
- W2790592899 hasConceptScore W2790592899C103278499 @default.
- W2790592899 hasConceptScore W2790592899C108583219 @default.
- W2790592899 hasConceptScore W2790592899C115961682 @default.
- W2790592899 hasConceptScore W2790592899C119857082 @default.
- W2790592899 hasConceptScore W2790592899C138885662 @default.
- W2790592899 hasConceptScore W2790592899C153180895 @default.
- W2790592899 hasConceptScore W2790592899C154945302 @default.
- W2790592899 hasConceptScore W2790592899C162324750 @default.
- W2790592899 hasConceptScore W2790592899C176217482 @default.
- W2790592899 hasConceptScore W2790592899C188441871 @default.
- W2790592899 hasConceptScore W2790592899C195704467 @default.
- W2790592899 hasConceptScore W2790592899C21547014 @default.
- W2790592899 hasConceptScore W2790592899C2776401178 @default.
- W2790592899 hasConceptScore W2790592899C41008148 @default.
- W2790592899 hasConceptScore W2790592899C41895202 @default.
- W2790592899 hasConceptScore W2790592899C50644808 @default.
- W2790592899 hasConceptScore W2790592899C59404180 @default.