Matches in SemOpenAlex for { <https://semopenalex.org/work/W2790597188> ?p ?o ?g. }
- W2790597188 endingPage "3481" @default.
- W2790597188 startingPage "3456" @default.
- W2790597188 abstract "Recent developments in the ability to automatically and efficiently extract natural frequencies, damping ratios, and full-field mode shapes from video of vibrating structures has great potential for reducing the resources and time required for performing experimental and operational modal analysis at very high spatial resolution. Furthermore, these techniques have the added advantage that they can be implemented remotely and in a non-contact fashion. Emerging full-field imaging techniques therefore have potential to allow the identification of the modal properties of structures in regimes that used to be challenging. For instance, these techniques suggest that the high spatial resolution structural identification could be performed on an aircraft during flight using a ground or aircraft-based imager. They also have the potential to identify the dynamics of microscopic systems. In order to realize this capability it will be necessary to develop techniques that can extract full-field structural dynamics in the presence of non-ideal operating conditions. In this work, we develop a framework for the deployment of emerging algorithms that allow the automatic extraction of high-resolution, full-field modal parameters in the presence of non-ideal operating conditions. One of the most notable non-ideal operating conditions is the rigid body motion of both the structure being measured as well as the imager performing the measurement. We demonstrate an instantiation of the framework by showing how it can be used to address, in-plane, translational, rigid body motion. The development of a frame-to-frame keypoint–based technique for identifying full-field structural dynamics in the presence of either rigid body motion is presented and demonstrated in the context of the framework for the deployment of full-field structural identification techniques in the presence of non-ideal operating conditions. It is expected that this framework will ultimately help enable the collection of full-field structural dynamics using measurement platforms including unmanned aerial vehicles, robotic telescopes, satellites, imagers mounted in high-vibration environments (seismic, industrial, harsh weather), characterization of microscopic structures, and human-carried imagers. If imager-based structural identification techniques mature to the point that they can be used in non-ideal field conditions, it could open up the possibility that the structural health monitoring community will be able to think beyond monitoring individual structures, to full-field structural integrity monitoring at the city scale." @default.
- W2790597188 created "2018-03-29" @default.
- W2790597188 creator A5038689535 @default.
- W2790597188 creator A5043360223 @default.
- W2790597188 creator A5054841508 @default.
- W2790597188 creator A5065112326 @default.
- W2790597188 creator A5069471785 @default.
- W2790597188 date "2018-02-16" @default.
- W2790597188 modified "2023-10-13" @default.
- W2790597188 title "A framework for the identification of full-field structural dynamics using sequences of images in the presence of non-ideal operating conditions" @default.
- W2790597188 cites W1132909708 @default.
- W2790597188 cites W1578285471 @default.
- W2790597188 cites W1856933006 @default.
- W2790597188 cites W1904627607 @default.
- W2790597188 cites W1961392663 @default.
- W2790597188 cites W1976904340 @default.
- W2790597188 cites W1980081233 @default.
- W2790597188 cites W1980631471 @default.
- W2790597188 cites W1990370049 @default.
- W2790597188 cites W2002646389 @default.
- W2790597188 cites W2004775482 @default.
- W2790597188 cites W2013936256 @default.
- W2790597188 cites W2014625578 @default.
- W2790597188 cites W2014763393 @default.
- W2790597188 cites W2028660383 @default.
- W2790597188 cites W2031912957 @default.
- W2790597188 cites W2033615713 @default.
- W2790597188 cites W2045831595 @default.
- W2790597188 cites W2056440320 @default.
- W2790597188 cites W2068516433 @default.
- W2790597188 cites W2069072590 @default.
- W2790597188 cites W2071820351 @default.
- W2790597188 cites W2081887802 @default.
- W2790597188 cites W2103018059 @default.
- W2790597188 cites W2116335578 @default.
- W2790597188 cites W2117552096 @default.
- W2790597188 cites W2140426751 @default.
- W2790597188 cites W2140907716 @default.
- W2790597188 cites W2141584146 @default.
- W2790597188 cites W2156550040 @default.
- W2790597188 cites W2165406874 @default.
- W2790597188 cites W2171431894 @default.
- W2790597188 cites W2285089189 @default.
- W2790597188 cites W2407746226 @default.
- W2790597188 cites W2498560677 @default.
- W2790597188 cites W2512804334 @default.
- W2790597188 cites W2519518809 @default.
- W2790597188 cites W2549940417 @default.
- W2790597188 cites W2560293681 @default.
- W2790597188 cites W2598998892 @default.
- W2790597188 cites W2601513145 @default.
- W2790597188 cites W2605799847 @default.
- W2790597188 cites W2606843567 @default.
- W2790597188 cites W2606861307 @default.
- W2790597188 cites W2611118946 @default.
- W2790597188 cites W2733461252 @default.
- W2790597188 cites W2739367555 @default.
- W2790597188 cites W2753294871 @default.
- W2790597188 cites W3020339995 @default.
- W2790597188 doi "https://doi.org/10.1177/1045389x17754271" @default.
- W2790597188 hasPublicationYear "2018" @default.
- W2790597188 type Work @default.
- W2790597188 sameAs 2790597188 @default.
- W2790597188 citedByCount "8" @default.
- W2790597188 countsByYear W27905971882018 @default.
- W2790597188 countsByYear W27905971882019 @default.
- W2790597188 countsByYear W27905971882020 @default.
- W2790597188 countsByYear W27905971882021 @default.
- W2790597188 countsByYear W27905971882022 @default.
- W2790597188 crossrefType "journal-article" @default.
- W2790597188 hasAuthorship W2790597188A5038689535 @default.
- W2790597188 hasAuthorship W2790597188A5043360223 @default.
- W2790597188 hasAuthorship W2790597188A5054841508 @default.
- W2790597188 hasAuthorship W2790597188A5065112326 @default.
- W2790597188 hasAuthorship W2790597188A5069471785 @default.
- W2790597188 hasBestOaLocation W27905971881 @default.
- W2790597188 hasConcept C104286136 @default.
- W2790597188 hasConcept C111472728 @default.
- W2790597188 hasConcept C116834253 @default.
- W2790597188 hasConcept C126042441 @default.
- W2790597188 hasConcept C127413603 @default.
- W2790597188 hasConcept C135628077 @default.
- W2790597188 hasConcept C138885662 @default.
- W2790597188 hasConcept C16345878 @default.
- W2790597188 hasConcept C185592680 @default.
- W2790597188 hasConcept C188027245 @default.
- W2790597188 hasConcept C202444582 @default.
- W2790597188 hasConcept C2524010 @default.
- W2790597188 hasConcept C2776639384 @default.
- W2790597188 hasConcept C33923547 @default.
- W2790597188 hasConcept C41008148 @default.
- W2790597188 hasConcept C59822182 @default.
- W2790597188 hasConcept C66938386 @default.
- W2790597188 hasConcept C71139939 @default.
- W2790597188 hasConcept C76155785 @default.
- W2790597188 hasConcept C86803240 @default.
- W2790597188 hasConcept C9652623 @default.
- W2790597188 hasConceptScore W2790597188C104286136 @default.