Matches in SemOpenAlex for { <https://semopenalex.org/work/W2790618171> ?p ?o ?g. }
- W2790618171 endingPage "154" @default.
- W2790618171 startingPage "147" @default.
- W2790618171 abstract "The objectives of this study were: (i) to assess genotype imputation accuracy in different scenarios using genome-wide single nucleotide polymorphisms (SNP) data from a population comprising two generations of farmed Atlantic salmon and (ii) to assess the accuracy of genomic predictions for a quantitative trait (body weight) using the imputed genotypes. The pedigree consisted of 53 parents and 1069 offspring genotyped using a high-density SNP panel (50 K). Two groups were created: Group A: 90% of the offspring were included into training and 10% into validation sets; Group B: 10% of the offspring were included into training and 90% into validation sets. Different scenarios of available genotypic information from relatives were tested for the two groups previously described. Imputation was performed using three in silico low-density panels (0.5, 3 and 6 K) with all markers except the markers present on the low-density panel masked in the validation sets. The accuracy of genomic selection was tested using the scenarios that resulted in the best and the worst imputation accuracy for the three low density panels and were compared to accuracy obtained from pedigree-based best linear unbiased prediction (PBLUP) and genomic predictions using the 50 K SNP panel. In general, imputation accuracy ranged from 0.74 to 0.98 depending on scenario. For the best scenario with the highest number of animals in reference population (Group A), the accuracy of imputation ranged from 0.95 to 0.98 depending on the low-density panel used. For the best scenario with the lowest number of animals in reference population (Group B), the accuracy of imputation ranged from 0.94 to 0.98 depending on the low-density panel used. In general, the number of SNPs in the low-density panels had a greater influence on the accuracy of imputation than the size of the reference set. The accuracies of genomic predictions using imputed genotypes, ranging from 0.71 to 0.73, outperformed PBLUP (0.66) and were identical or very similar to the use of all true genotype data (0.73). The high imputation and genomic prediction accuracy suggest that the imputation of genotypes from low density (0.5 to 3 K) to high density (50 K) could be a cost-effective strategy for the feasibility of the practical implementation of genomic selection in Atlantic salmon." @default.
- W2790618171 created "2018-03-29" @default.
- W2790618171 creator A5005051455 @default.
- W2790618171 creator A5048349962 @default.
- W2790618171 creator A5053180261 @default.
- W2790618171 creator A5056463104 @default.
- W2790618171 creator A5078492354 @default.
- W2790618171 creator A5088148607 @default.
- W2790618171 creator A5090298166 @default.
- W2790618171 date "2018-04-01" @default.
- W2790618171 modified "2023-09-30" @default.
- W2790618171 title "Accuracy of genotype imputation and genomic predictions in a two-generation farmed Atlantic salmon population using high-density and low-density SNP panels" @default.
- W2790618171 cites W1587035534 @default.
- W2790618171 cites W1928998639 @default.
- W2790618171 cites W1968752557 @default.
- W2790618171 cites W1970459140 @default.
- W2790618171 cites W1979615508 @default.
- W2790618171 cites W1990566629 @default.
- W2790618171 cites W2003500802 @default.
- W2790618171 cites W2022551231 @default.
- W2790618171 cites W2035380418 @default.
- W2790618171 cites W2049569650 @default.
- W2790618171 cites W2053588621 @default.
- W2790618171 cites W2054149390 @default.
- W2790618171 cites W2067715889 @default.
- W2790618171 cites W2076539227 @default.
- W2790618171 cites W2090447057 @default.
- W2790618171 cites W2111940561 @default.
- W2790618171 cites W2118960339 @default.
- W2790618171 cites W2126673859 @default.
- W2790618171 cites W2133289541 @default.
- W2790618171 cites W2148396262 @default.
- W2790618171 cites W2148823986 @default.
- W2790618171 cites W2156976856 @default.
- W2790618171 cites W2157164297 @default.
- W2790618171 cites W2163566091 @default.
- W2790618171 cites W2163958121 @default.
- W2790618171 cites W2166975941 @default.
- W2790618171 cites W2271012763 @default.
- W2790618171 cites W2407449780 @default.
- W2790618171 cites W2471746432 @default.
- W2790618171 cites W2583421653 @default.
- W2790618171 cites W2585632521 @default.
- W2790618171 cites W2585769723 @default.
- W2790618171 cites W2765473855 @default.
- W2790618171 doi "https://doi.org/10.1016/j.aquaculture.2018.03.004" @default.
- W2790618171 hasPublicationYear "2018" @default.
- W2790618171 type Work @default.
- W2790618171 sameAs 2790618171 @default.
- W2790618171 citedByCount "45" @default.
- W2790618171 countsByYear W27906181712018 @default.
- W2790618171 countsByYear W27906181712019 @default.
- W2790618171 countsByYear W27906181712020 @default.
- W2790618171 countsByYear W27906181712021 @default.
- W2790618171 countsByYear W27906181712022 @default.
- W2790618171 countsByYear W27906181712023 @default.
- W2790618171 crossrefType "journal-article" @default.
- W2790618171 hasAuthorship W2790618171A5005051455 @default.
- W2790618171 hasAuthorship W2790618171A5048349962 @default.
- W2790618171 hasAuthorship W2790618171A5053180261 @default.
- W2790618171 hasAuthorship W2790618171A5056463104 @default.
- W2790618171 hasAuthorship W2790618171A5078492354 @default.
- W2790618171 hasAuthorship W2790618171A5088148607 @default.
- W2790618171 hasAuthorship W2790618171A5090298166 @default.
- W2790618171 hasBestOaLocation W27906181712 @default.
- W2790618171 hasConcept C103545067 @default.
- W2790618171 hasConcept C104317684 @default.
- W2790618171 hasConcept C105795698 @default.
- W2790618171 hasConcept C106934330 @default.
- W2790618171 hasConcept C135763542 @default.
- W2790618171 hasConcept C139275648 @default.
- W2790618171 hasConcept C144024400 @default.
- W2790618171 hasConcept C149923435 @default.
- W2790618171 hasConcept C153209595 @default.
- W2790618171 hasConcept C154945302 @default.
- W2790618171 hasConcept C199360897 @default.
- W2790618171 hasConcept C2908647359 @default.
- W2790618171 hasConcept C2992444039 @default.
- W2790618171 hasConcept C33923547 @default.
- W2790618171 hasConcept C41008148 @default.
- W2790618171 hasConcept C54355233 @default.
- W2790618171 hasConcept C58041806 @default.
- W2790618171 hasConcept C81917197 @default.
- W2790618171 hasConcept C86803240 @default.
- W2790618171 hasConcept C9357733 @default.
- W2790618171 hasConceptScore W2790618171C103545067 @default.
- W2790618171 hasConceptScore W2790618171C104317684 @default.
- W2790618171 hasConceptScore W2790618171C105795698 @default.
- W2790618171 hasConceptScore W2790618171C106934330 @default.
- W2790618171 hasConceptScore W2790618171C135763542 @default.
- W2790618171 hasConceptScore W2790618171C139275648 @default.
- W2790618171 hasConceptScore W2790618171C144024400 @default.
- W2790618171 hasConceptScore W2790618171C149923435 @default.
- W2790618171 hasConceptScore W2790618171C153209595 @default.
- W2790618171 hasConceptScore W2790618171C154945302 @default.
- W2790618171 hasConceptScore W2790618171C199360897 @default.
- W2790618171 hasConceptScore W2790618171C2908647359 @default.
- W2790618171 hasConceptScore W2790618171C2992444039 @default.