Matches in SemOpenAlex for { <https://semopenalex.org/work/W2790651505> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2790651505 endingPage "266" @default.
- W2790651505 startingPage "253" @default.
- W2790651505 abstract "Abstract Automatic classification of Power Quality Disturbances (PQDs) is a challenging concern for both the utility and industry. In this paper, a novel technique for automatic classification of single and hybrid PQDs is proposed. The proposed algorithm consists of the Discrete Wavelet Transform (DWT) and Probabilistic Neural Network based BAT (PNN-BAT) optimal feature selection of PQDs. DWT with Multi-Resolution Analysis (MRA) is used for the feature extraction of the disturbances. The power quality disturbances are in the form of signals like voltage sag, voltage swell, voltage transients, flicker, voltage imbalance, and harmonics. Such disturbance signals cover a broad frequency spectrum because of its high sampling rate and produce megabytes of data which leads to the requirement of high storage space. In this paper, discrete wavelet transform is used to analyze the power quality disturbance signals and to reduce the storage space required. The PNN classifier is used as an effective classifier for the classification of the PQDs. However, the two critical concerns such as the selection of the optimal features and the spread constant value might affect the performance of the classifier. Hence, these two issues are addressed using a novel technique PNN-BAT based optimal feature selection and parameter optimization for improving the performance of the classification system. The BAT algorithm is used to select optimal features from a large feature set and the optimal value of the PNN spread constantly. The optimal feature selection method retains the useful features and discards the redundant features." @default.
- W2790651505 created "2018-03-29" @default.
- W2790651505 creator A5014224240 @default.
- W2790651505 creator A5036195738 @default.
- W2790651505 date "2018-04-01" @default.
- W2790651505 modified "2023-10-18" @default.
- W2790651505 title "Novel optimization parameters of power quality disturbances using novel bio-inspired algorithms: A comparative approach" @default.
- W2790651505 cites W1852262583 @default.
- W2790651505 cites W1977196195 @default.
- W2790651505 cites W1983663433 @default.
- W2790651505 cites W1995594580 @default.
- W2790651505 cites W2004373333 @default.
- W2790651505 cites W2004653480 @default.
- W2790651505 cites W2010133458 @default.
- W2790651505 cites W2011223236 @default.
- W2790651505 cites W2012315090 @default.
- W2790651505 cites W2047626401 @default.
- W2790651505 cites W2056125095 @default.
- W2790651505 cites W2061288717 @default.
- W2790651505 cites W2070193664 @default.
- W2790651505 cites W2078573057 @default.
- W2790651505 cites W2113391288 @default.
- W2790651505 cites W2134634669 @default.
- W2790651505 cites W2154977952 @default.
- W2790651505 cites W2236744271 @default.
- W2790651505 cites W2492181757 @default.
- W2790651505 cites W2509395491 @default.
- W2790651505 cites W2528903881 @default.
- W2790651505 doi "https://doi.org/10.1016/j.bspc.2018.02.003" @default.
- W2790651505 hasPublicationYear "2018" @default.
- W2790651505 type Work @default.
- W2790651505 sameAs 2790651505 @default.
- W2790651505 citedByCount "8" @default.
- W2790651505 countsByYear W27906515052018 @default.
- W2790651505 countsByYear W27906515052019 @default.
- W2790651505 countsByYear W27906515052020 @default.
- W2790651505 countsByYear W27906515052021 @default.
- W2790651505 countsByYear W27906515052022 @default.
- W2790651505 crossrefType "journal-article" @default.
- W2790651505 hasAuthorship W2790651505A5014224240 @default.
- W2790651505 hasAuthorship W2790651505A5036195738 @default.
- W2790651505 hasConcept C111472728 @default.
- W2790651505 hasConcept C11413529 @default.
- W2790651505 hasConcept C121332964 @default.
- W2790651505 hasConcept C126255220 @default.
- W2790651505 hasConcept C138885662 @default.
- W2790651505 hasConcept C163258240 @default.
- W2790651505 hasConcept C2779530757 @default.
- W2790651505 hasConcept C2779665505 @default.
- W2790651505 hasConcept C2987595161 @default.
- W2790651505 hasConcept C33923547 @default.
- W2790651505 hasConcept C41008148 @default.
- W2790651505 hasConcept C62520636 @default.
- W2790651505 hasConceptScore W2790651505C111472728 @default.
- W2790651505 hasConceptScore W2790651505C11413529 @default.
- W2790651505 hasConceptScore W2790651505C121332964 @default.
- W2790651505 hasConceptScore W2790651505C126255220 @default.
- W2790651505 hasConceptScore W2790651505C138885662 @default.
- W2790651505 hasConceptScore W2790651505C163258240 @default.
- W2790651505 hasConceptScore W2790651505C2779530757 @default.
- W2790651505 hasConceptScore W2790651505C2779665505 @default.
- W2790651505 hasConceptScore W2790651505C2987595161 @default.
- W2790651505 hasConceptScore W2790651505C33923547 @default.
- W2790651505 hasConceptScore W2790651505C41008148 @default.
- W2790651505 hasConceptScore W2790651505C62520636 @default.
- W2790651505 hasLocation W27906515051 @default.
- W2790651505 hasOpenAccess W2790651505 @default.
- W2790651505 hasPrimaryLocation W27906515051 @default.
- W2790651505 hasRelatedWork W2116911522 @default.
- W2790651505 hasRelatedWork W2325243670 @default.
- W2790651505 hasRelatedWork W2333698505 @default.
- W2790651505 hasRelatedWork W2351491280 @default.
- W2790651505 hasRelatedWork W2371447506 @default.
- W2790651505 hasRelatedWork W2374429309 @default.
- W2790651505 hasRelatedWork W2386767533 @default.
- W2790651505 hasRelatedWork W303980170 @default.
- W2790651505 hasRelatedWork W4287863136 @default.
- W2790651505 hasRelatedWork W4312796479 @default.
- W2790651505 hasVolume "42" @default.
- W2790651505 isParatext "false" @default.
- W2790651505 isRetracted "false" @default.
- W2790651505 magId "2790651505" @default.
- W2790651505 workType "article" @default.