Matches in SemOpenAlex for { <https://semopenalex.org/work/W2790688051> ?p ?o ?g. }
- W2790688051 endingPage "2166" @default.
- W2790688051 startingPage "2154" @default.
- W2790688051 abstract "An infinite-horizon optimal regulation problem for a control-affine deterministic system is solved online using a local state following (StaF) kernel and a regional model-based reinforcement learning (R-MBRL) method to approximate the value function. Unlike traditional methods such as R-MBRL that aim to approximate the value function over a large compact set, the StaF kernel approach aims to approximate the value function in a local neighborhood of the state that travels within a compact set. In this paper, the value function is approximated using a state-dependent convex combination of the StaF-based and the R-MBRL-based approximations. As the state enters a neighborhood containing the origin, the value function transitions from being approximated by the StaF approach to the R-MBRL approach. Semiglobal uniformly ultimately bounded (SGUUB) convergence of the system states to the origin is established using a Lyapunov-based analysis. Simulation results are provided for two, three, six, and ten-state dynamical systems to demonstrate the scalability and performance of the developed method." @default.
- W2790688051 created "2018-03-29" @default.
- W2790688051 creator A5018956236 @default.
- W2790688051 creator A5032651215 @default.
- W2790688051 creator A5058488295 @default.
- W2790688051 creator A5071224574 @default.
- W2790688051 date "2018-06-01" @default.
- W2790688051 modified "2023-10-18" @default.
- W2790688051 title "Approximate Dynamic Programming: Combining Regional and Local State Following Approximations" @default.
- W2790688051 cites W1483858097 @default.
- W2790688051 cites W1527736490 @default.
- W2790688051 cites W1540245649 @default.
- W2790688051 cites W1580348315 @default.
- W2790688051 cites W1601719319 @default.
- W2790688051 cites W1749408314 @default.
- W2790688051 cites W1977671496 @default.
- W2790688051 cites W1981146152 @default.
- W2790688051 cites W1983523797 @default.
- W2790688051 cites W1988242845 @default.
- W2790688051 cites W1995273480 @default.
- W2790688051 cites W1997603681 @default.
- W2790688051 cites W2002007892 @default.
- W2790688051 cites W2039762773 @default.
- W2790688051 cites W2052305027 @default.
- W2790688051 cites W2081514674 @default.
- W2790688051 cites W2085194340 @default.
- W2790688051 cites W2086975818 @default.
- W2790688051 cites W2104843094 @default.
- W2790688051 cites W2113501460 @default.
- W2790688051 cites W2157577161 @default.
- W2790688051 cites W2165726932 @default.
- W2790688051 cites W2214816543 @default.
- W2790688051 cites W2292860354 @default.
- W2790688051 cites W2343912161 @default.
- W2790688051 cites W2403413656 @default.
- W2790688051 cites W2476385022 @default.
- W2790688051 cites W2476930474 @default.
- W2790688051 cites W2509783950 @default.
- W2790688051 cites W2602493242 @default.
- W2790688051 cites W2735449579 @default.
- W2790688051 cites W4251512373 @default.
- W2790688051 doi "https://doi.org/10.1109/tnnls.2018.2808102" @default.
- W2790688051 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29771668" @default.
- W2790688051 hasPublicationYear "2018" @default.
- W2790688051 type Work @default.
- W2790688051 sameAs 2790688051 @default.
- W2790688051 citedByCount "25" @default.
- W2790688051 countsByYear W27906880512018 @default.
- W2790688051 countsByYear W27906880512019 @default.
- W2790688051 countsByYear W27906880512020 @default.
- W2790688051 countsByYear W27906880512021 @default.
- W2790688051 countsByYear W27906880512022 @default.
- W2790688051 countsByYear W27906880512023 @default.
- W2790688051 crossrefType "journal-article" @default.
- W2790688051 hasAuthorship W2790688051A5018956236 @default.
- W2790688051 hasAuthorship W2790688051A5032651215 @default.
- W2790688051 hasAuthorship W2790688051A5058488295 @default.
- W2790688051 hasAuthorship W2790688051A5071224574 @default.
- W2790688051 hasBestOaLocation W27906880511 @default.
- W2790688051 hasConcept C11413529 @default.
- W2790688051 hasConcept C118615104 @default.
- W2790688051 hasConcept C121332964 @default.
- W2790688051 hasConcept C126255220 @default.
- W2790688051 hasConcept C134306372 @default.
- W2790688051 hasConcept C14036430 @default.
- W2790688051 hasConcept C14646407 @default.
- W2790688051 hasConcept C154945302 @default.
- W2790688051 hasConcept C158622935 @default.
- W2790688051 hasConcept C162324750 @default.
- W2790688051 hasConcept C2777303404 @default.
- W2790688051 hasConcept C28826006 @default.
- W2790688051 hasConcept C33923547 @default.
- W2790688051 hasConcept C34388435 @default.
- W2790688051 hasConcept C41008148 @default.
- W2790688051 hasConcept C48103436 @default.
- W2790688051 hasConcept C50522688 @default.
- W2790688051 hasConcept C60640748 @default.
- W2790688051 hasConcept C62520636 @default.
- W2790688051 hasConcept C74193536 @default.
- W2790688051 hasConcept C78458016 @default.
- W2790688051 hasConcept C86803240 @default.
- W2790688051 hasConcept C97541855 @default.
- W2790688051 hasConceptScore W2790688051C11413529 @default.
- W2790688051 hasConceptScore W2790688051C118615104 @default.
- W2790688051 hasConceptScore W2790688051C121332964 @default.
- W2790688051 hasConceptScore W2790688051C126255220 @default.
- W2790688051 hasConceptScore W2790688051C134306372 @default.
- W2790688051 hasConceptScore W2790688051C14036430 @default.
- W2790688051 hasConceptScore W2790688051C14646407 @default.
- W2790688051 hasConceptScore W2790688051C154945302 @default.
- W2790688051 hasConceptScore W2790688051C158622935 @default.
- W2790688051 hasConceptScore W2790688051C162324750 @default.
- W2790688051 hasConceptScore W2790688051C2777303404 @default.
- W2790688051 hasConceptScore W2790688051C28826006 @default.
- W2790688051 hasConceptScore W2790688051C33923547 @default.
- W2790688051 hasConceptScore W2790688051C34388435 @default.
- W2790688051 hasConceptScore W2790688051C41008148 @default.
- W2790688051 hasConceptScore W2790688051C48103436 @default.