Matches in SemOpenAlex for { <https://semopenalex.org/work/W2790758020> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2790758020 abstract "Rough set theory is composed with a number of properties which makes it suitable for manipulating the uncertain systems. This uncertainty is handled in terms of lower and upper approximations which computes indiscernibility and rough entropy. In this paper a data reduction method based on indiscernibility and rough entropy is used. Firstly, the instance is compared to extract distinct instances on the basis of decision attribute. Secondly, on the basis of indiscernibility, the irrelevant attributes are removed. Thirdly, rough entropy is used to select the attributes based on their minimum entropy value. Finally, a significant amount of data is reduced using the proposed method. The effectiveness of the method is verified on eight standard medical data sets using classification accuracy. Experimental work demonstrates that with the reduced data SVM achieves a high classification accuracy." @default.
- W2790758020 created "2018-03-29" @default.
- W2790758020 creator A5023453646 @default.
- W2790758020 creator A5029757136 @default.
- W2790758020 creator A5049855020 @default.
- W2790758020 date "2017-09-01" @default.
- W2790758020 modified "2023-09-27" @default.
- W2790758020 title "A data reduction method based on indiscernibility and rough entropy for uncertain systems" @default.
- W2790758020 cites W1545541701 @default.
- W2790758020 cites W1571401318 @default.
- W2790758020 cites W1967689665 @default.
- W2790758020 cites W2000158142 @default.
- W2790758020 cites W2004068299 @default.
- W2790758020 cites W2041404167 @default.
- W2790758020 cites W2055307975 @default.
- W2790758020 cites W2090043049 @default.
- W2790758020 cites W2097498222 @default.
- W2790758020 cites W2109676405 @default.
- W2790758020 cites W2139377411 @default.
- W2790758020 cites W2143451122 @default.
- W2790758020 cites W2156909104 @default.
- W2790758020 cites W2168910476 @default.
- W2790758020 cites W2570343052 @default.
- W2790758020 doi "https://doi.org/10.1109/intellisys.2017.8324337" @default.
- W2790758020 hasPublicationYear "2017" @default.
- W2790758020 type Work @default.
- W2790758020 sameAs 2790758020 @default.
- W2790758020 citedByCount "1" @default.
- W2790758020 countsByYear W27907580202018 @default.
- W2790758020 crossrefType "proceedings-article" @default.
- W2790758020 hasAuthorship W2790758020A5023453646 @default.
- W2790758020 hasAuthorship W2790758020A5029757136 @default.
- W2790758020 hasAuthorship W2790758020A5049855020 @default.
- W2790758020 hasConcept C106301342 @default.
- W2790758020 hasConcept C111012933 @default.
- W2790758020 hasConcept C119857082 @default.
- W2790758020 hasConcept C121332964 @default.
- W2790758020 hasConcept C12267149 @default.
- W2790758020 hasConcept C124101348 @default.
- W2790758020 hasConcept C153180895 @default.
- W2790758020 hasConcept C154945302 @default.
- W2790758020 hasConcept C33923547 @default.
- W2790758020 hasConcept C39105242 @default.
- W2790758020 hasConcept C41008148 @default.
- W2790758020 hasConcept C62520636 @default.
- W2790758020 hasConceptScore W2790758020C106301342 @default.
- W2790758020 hasConceptScore W2790758020C111012933 @default.
- W2790758020 hasConceptScore W2790758020C119857082 @default.
- W2790758020 hasConceptScore W2790758020C121332964 @default.
- W2790758020 hasConceptScore W2790758020C12267149 @default.
- W2790758020 hasConceptScore W2790758020C124101348 @default.
- W2790758020 hasConceptScore W2790758020C153180895 @default.
- W2790758020 hasConceptScore W2790758020C154945302 @default.
- W2790758020 hasConceptScore W2790758020C33923547 @default.
- W2790758020 hasConceptScore W2790758020C39105242 @default.
- W2790758020 hasConceptScore W2790758020C41008148 @default.
- W2790758020 hasConceptScore W2790758020C62520636 @default.
- W2790758020 hasLocation W27907580201 @default.
- W2790758020 hasOpenAccess W2790758020 @default.
- W2790758020 hasPrimaryLocation W27907580201 @default.
- W2790758020 hasRelatedWork W1513108952 @default.
- W2790758020 hasRelatedWork W2010365618 @default.
- W2790758020 hasRelatedWork W2069505888 @default.
- W2790758020 hasRelatedWork W2071564251 @default.
- W2790758020 hasRelatedWork W2075956613 @default.
- W2790758020 hasRelatedWork W2092035617 @default.
- W2790758020 hasRelatedWork W2099105442 @default.
- W2790758020 hasRelatedWork W2119123776 @default.
- W2790758020 hasRelatedWork W2144557133 @default.
- W2790758020 hasRelatedWork W2352488674 @default.
- W2790758020 hasRelatedWork W2365146316 @default.
- W2790758020 hasRelatedWork W2381359439 @default.
- W2790758020 hasRelatedWork W2388158810 @default.
- W2790758020 hasRelatedWork W2394241996 @default.
- W2790758020 hasRelatedWork W2554596639 @default.
- W2790758020 hasRelatedWork W2773841211 @default.
- W2790758020 hasRelatedWork W2898363035 @default.
- W2790758020 hasRelatedWork W2979182617 @default.
- W2790758020 hasRelatedWork W2309860226 @default.
- W2790758020 hasRelatedWork W2855464638 @default.
- W2790758020 isParatext "false" @default.
- W2790758020 isRetracted "false" @default.
- W2790758020 magId "2790758020" @default.
- W2790758020 workType "article" @default.