Matches in SemOpenAlex for { <https://semopenalex.org/work/W2790758034> ?p ?o ?g. }
- W2790758034 endingPage "248" @default.
- W2790758034 startingPage "236" @default.
- W2790758034 abstract "Breakthrough curves (BTCs) observed during tracer tests in highly heterogeneous aquifers display strong tailing. Power laws are popular models for both the empirical fitting of these curves, and the prediction of transport using upscaling models based on best-fitted estimated parameters (e.g. the power law slope or exponent). The predictive capacity of power law based upscaling models can be however questioned due to the difficulties to link model parameters with the aquifers’ physical properties. This work analyzes two aspects that can limit the use of power laws as effective predictive tools: (a) the implication of statistical subsampling, which often renders power laws undistinguishable from other heavily tailed distributions, such as the logarithmic (LOG); (b) the difficulties to reconcile fitting parameters obtained from models with different formulations, such as the presence of a late-time cutoff in the power law model. Two rigorous and systematic stochastic analyses, one based on benchmark distributions and the other on BTCs obtained from transport simulations, are considered. It is found that a power law model without cutoff (PL) results in best-fitted exponents (αPL) falling in the range of typical experimental values reported in the literature (1.5 < αPL < 4). The PL exponent tends to lower values as the tailing becomes heavier. Strong fluctuations occur when the number of samples is limited, due to the effects of subsampling. On the other hand, when the power law model embeds a cutoff (PLCO), the best-fitted exponent (αCO) is insensitive to the degree of tailing and to the effects of subsampling and tends to a constant αCO ≈ 1. In the PLCO model, the cutoff rate (λ) is the parameter that fully reproduces the persistence of the tailing and is shown to be inversely correlated to the LOG scale parameter (i.e. with the skewness of the distribution). The theoretical results are consistent with the fitting analysis of a tracer test performed during the MADE-5 experiment. It is shown that a simple mechanistic upscaling model based on the PLCO formulation is able to predict the ensemble of BTCs from the stochastic transport simulations without the need of any fitted parameters. The model embeds the constant αCO = 1 and relies on a stratified description of the transport mechanisms to estimate λ. The PL fails to reproduce the ensemble of BTCs at late time, while the LOG model provides consistent results as the PLCO model, however without a clear mechanistic link between physical properties and model parameters. It is concluded that, while all parametric models may work equally well (or equally wrong) for the empirical fitting of the experimental BTCs tails due to the effects of subsampling, for predictive purposes this is not true. A careful selection of the proper heavily tailed models and corresponding parameters is required to ensure physically-based transport predictions." @default.
- W2790758034 created "2018-03-29" @default.
- W2790758034 creator A5005808721 @default.
- W2790758034 creator A5034491656 @default.
- W2790758034 date "2018-03-01" @default.
- W2790758034 modified "2023-09-27" @default.
- W2790758034 title "Reproducing tailing in breakthrough curves: Are statistical models equally representative and predictive?" @default.
- W2790758034 cites W1508354250 @default.
- W2790758034 cites W1550010211 @default.
- W2790758034 cites W1582091313 @default.
- W2790758034 cites W1583262620 @default.
- W2790758034 cites W1602353851 @default.
- W2790758034 cites W1613398566 @default.
- W2790758034 cites W1632977450 @default.
- W2790758034 cites W1659987100 @default.
- W2790758034 cites W1958018307 @default.
- W2790758034 cites W1964195699 @default.
- W2790758034 cites W1973911373 @default.
- W2790758034 cites W1981269096 @default.
- W2790758034 cites W1985327207 @default.
- W2790758034 cites W1991979431 @default.
- W2790758034 cites W1993409472 @default.
- W2790758034 cites W1993803315 @default.
- W2790758034 cites W1994353683 @default.
- W2790758034 cites W2002341229 @default.
- W2790758034 cites W2007139519 @default.
- W2790758034 cites W2013821729 @default.
- W2790758034 cites W2020771370 @default.
- W2790758034 cites W2023060295 @default.
- W2790758034 cites W2027963417 @default.
- W2790758034 cites W2030179247 @default.
- W2790758034 cites W2043922553 @default.
- W2790758034 cites W2044008495 @default.
- W2790758034 cites W2065356856 @default.
- W2790758034 cites W2071951111 @default.
- W2790758034 cites W2079306626 @default.
- W2790758034 cites W2081142887 @default.
- W2790758034 cites W2086983306 @default.
- W2790758034 cites W2099111135 @default.
- W2790758034 cites W2101269547 @default.
- W2790758034 cites W2123673345 @default.
- W2790758034 cites W2128899604 @default.
- W2790758034 cites W2148716879 @default.
- W2790758034 cites W2162139571 @default.
- W2790758034 cites W2162673614 @default.
- W2790758034 cites W2176338862 @default.
- W2790758034 cites W2218087597 @default.
- W2790758034 cites W2233606749 @default.
- W2790758034 cites W2326138643 @default.
- W2790758034 cites W2550477280 @default.
- W2790758034 cites W2584447400 @default.
- W2790758034 cites W2592461921 @default.
- W2790758034 cites W2624295372 @default.
- W2790758034 cites W2650791901 @default.
- W2790758034 cites W3101452997 @default.
- W2790758034 cites W3103362336 @default.
- W2790758034 cites W4244229228 @default.
- W2790758034 cites W4255784061 @default.
- W2790758034 doi "https://doi.org/10.1016/j.advwatres.2018.01.023" @default.
- W2790758034 hasPublicationYear "2018" @default.
- W2790758034 type Work @default.
- W2790758034 sameAs 2790758034 @default.
- W2790758034 citedByCount "15" @default.
- W2790758034 countsByYear W27907580342018 @default.
- W2790758034 countsByYear W27907580342019 @default.
- W2790758034 countsByYear W27907580342020 @default.
- W2790758034 countsByYear W27907580342021 @default.
- W2790758034 countsByYear W27907580342022 @default.
- W2790758034 countsByYear W27907580342023 @default.
- W2790758034 crossrefType "journal-article" @default.
- W2790758034 hasAuthorship W2790758034A5005808721 @default.
- W2790758034 hasAuthorship W2790758034A5034491656 @default.
- W2790758034 hasBestOaLocation W27907580342 @default.
- W2790758034 hasConcept C105795698 @default.
- W2790758034 hasConcept C121332964 @default.
- W2790758034 hasConcept C121864883 @default.
- W2790758034 hasConcept C127313418 @default.
- W2790758034 hasConcept C127491075 @default.
- W2790758034 hasConcept C13280743 @default.
- W2790758034 hasConcept C134306372 @default.
- W2790758034 hasConcept C138885662 @default.
- W2790758034 hasConcept C151201525 @default.
- W2790758034 hasConcept C159985019 @default.
- W2790758034 hasConcept C185798385 @default.
- W2790758034 hasConcept C18762648 @default.
- W2790758034 hasConcept C192562407 @default.
- W2790758034 hasConcept C204323151 @default.
- W2790758034 hasConcept C2778217198 @default.
- W2790758034 hasConcept C2780388253 @default.
- W2790758034 hasConcept C33923547 @default.
- W2790758034 hasConcept C39927690 @default.
- W2790758034 hasConcept C41895202 @default.
- W2790758034 hasConcept C62520636 @default.
- W2790758034 hasConcept C87040749 @default.
- W2790758034 hasConcept C97355855 @default.
- W2790758034 hasConceptScore W2790758034C105795698 @default.
- W2790758034 hasConceptScore W2790758034C121332964 @default.
- W2790758034 hasConceptScore W2790758034C121864883 @default.