Matches in SemOpenAlex for { <https://semopenalex.org/work/W2790763693> ?p ?o ?g. }
- W2790763693 endingPage "535" @default.
- W2790763693 startingPage "525" @default.
- W2790763693 abstract "This paper proposes a multicriteria design optimization methodology for permanent magnet (PM) motors used in electric vehicle (EV) applications. In the process, an adaptive-network-based fuzzy inference system (ANFIS) is utilized, coupled with a multiobjective optimization algorithm, as a surrogate model of the electric motor. This allows for the consideration of the full drive cycle and respective efficiency map for every motor design. The prediction error of the ANFIS is minimized by employing appropriate membership functions, initial training data, and an adaptive learning scheme via iterative training. The efficiency map is then implemented in a vehicle dynamic model to compute the total consumed energy over the driving cycle. The optimization profile accounts for total energy efficiency, torque density, and additionally considers complementary design criteria via an a posteriori selection procedure on the resulting Pareto set. The methodology developed is applied to optimize a surface PM motor with concentrated fractional slot winding, mounted on a light EV that competes in fuel economy races. The selected motor design has been validated through measurements on a prototype." @default.
- W2790763693 created "2018-03-29" @default.
- W2790763693 creator A5045116725 @default.
- W2790763693 creator A5064989351 @default.
- W2790763693 creator A5082966765 @default.
- W2790763693 date "2018-06-01" @default.
- W2790763693 modified "2023-10-11" @default.
- W2790763693 title "Multicriteria PM Motor Design Based on ANFIS Evaluation of EV Driving Cycle Efficiency" @default.
- W2790763693 cites W1967293254 @default.
- W2790763693 cites W1970118208 @default.
- W2790763693 cites W1985323824 @default.
- W2790763693 cites W1995773727 @default.
- W2790763693 cites W2011307124 @default.
- W2790763693 cites W2012165336 @default.
- W2790763693 cites W2019207321 @default.
- W2790763693 cites W2059866297 @default.
- W2790763693 cites W2067851749 @default.
- W2790763693 cites W2069053055 @default.
- W2790763693 cites W2084989295 @default.
- W2790763693 cites W2090715271 @default.
- W2790763693 cites W2093463998 @default.
- W2790763693 cites W2109680685 @default.
- W2790763693 cites W2124309333 @default.
- W2790763693 cites W2128340058 @default.
- W2790763693 cites W2129511809 @default.
- W2790763693 cites W2279039134 @default.
- W2790763693 cites W2322549747 @default.
- W2790763693 cites W2327417456 @default.
- W2790763693 cites W2327588262 @default.
- W2790763693 cites W2342702865 @default.
- W2790763693 cites W2344150594 @default.
- W2790763693 cites W2346208348 @default.
- W2790763693 cites W2358570842 @default.
- W2790763693 cites W2553224790 @default.
- W2790763693 cites W2576825669 @default.
- W2790763693 cites W2597041810 @default.
- W2790763693 cites W2747325146 @default.
- W2790763693 doi "https://doi.org/10.1109/tte.2018.2810707" @default.
- W2790763693 hasPublicationYear "2018" @default.
- W2790763693 type Work @default.
- W2790763693 sameAs 2790763693 @default.
- W2790763693 citedByCount "44" @default.
- W2790763693 countsByYear W27907636932018 @default.
- W2790763693 countsByYear W27907636932019 @default.
- W2790763693 countsByYear W27907636932020 @default.
- W2790763693 countsByYear W27907636932021 @default.
- W2790763693 countsByYear W27907636932022 @default.
- W2790763693 countsByYear W27907636932023 @default.
- W2790763693 crossrefType "journal-article" @default.
- W2790763693 hasAuthorship W2790763693A5045116725 @default.
- W2790763693 hasAuthorship W2790763693A5064989351 @default.
- W2790763693 hasAuthorship W2790763693A5082966765 @default.
- W2790763693 hasConcept C111919701 @default.
- W2790763693 hasConcept C115903868 @default.
- W2790763693 hasConcept C119599485 @default.
- W2790763693 hasConcept C119857082 @default.
- W2790763693 hasConcept C121332964 @default.
- W2790763693 hasConcept C126255220 @default.
- W2790763693 hasConcept C127413603 @default.
- W2790763693 hasConcept C137635306 @default.
- W2790763693 hasConcept C143587482 @default.
- W2790763693 hasConcept C144171764 @default.
- W2790763693 hasConcept C154945302 @default.
- W2790763693 hasConcept C163258240 @default.
- W2790763693 hasConcept C16389437 @default.
- W2790763693 hasConcept C169042556 @default.
- W2790763693 hasConcept C171146098 @default.
- W2790763693 hasConcept C176871988 @default.
- W2790763693 hasConcept C186108316 @default.
- W2790763693 hasConcept C195975749 @default.
- W2790763693 hasConcept C2742236 @default.
- W2790763693 hasConcept C2775924081 @default.
- W2790763693 hasConcept C2776422217 @default.
- W2790763693 hasConcept C2780932299 @default.
- W2790763693 hasConcept C33923547 @default.
- W2790763693 hasConcept C41008148 @default.
- W2790763693 hasConcept C47446073 @default.
- W2790763693 hasConcept C58166 @default.
- W2790763693 hasConcept C62520636 @default.
- W2790763693 hasConcept C68781425 @default.
- W2790763693 hasConcept C78519656 @default.
- W2790763693 hasConcept C97355855 @default.
- W2790763693 hasConcept C98045186 @default.
- W2790763693 hasConceptScore W2790763693C111919701 @default.
- W2790763693 hasConceptScore W2790763693C115903868 @default.
- W2790763693 hasConceptScore W2790763693C119599485 @default.
- W2790763693 hasConceptScore W2790763693C119857082 @default.
- W2790763693 hasConceptScore W2790763693C121332964 @default.
- W2790763693 hasConceptScore W2790763693C126255220 @default.
- W2790763693 hasConceptScore W2790763693C127413603 @default.
- W2790763693 hasConceptScore W2790763693C137635306 @default.
- W2790763693 hasConceptScore W2790763693C143587482 @default.
- W2790763693 hasConceptScore W2790763693C144171764 @default.
- W2790763693 hasConceptScore W2790763693C154945302 @default.
- W2790763693 hasConceptScore W2790763693C163258240 @default.
- W2790763693 hasConceptScore W2790763693C16389437 @default.
- W2790763693 hasConceptScore W2790763693C169042556 @default.
- W2790763693 hasConceptScore W2790763693C171146098 @default.