Matches in SemOpenAlex for { <https://semopenalex.org/work/W2790804407> ?p ?o ?g. }
- W2790804407 endingPage "52" @default.
- W2790804407 startingPage "41" @default.
- W2790804407 abstract "We analyze the pattern formation due to dislocations under cyclic loading resulting from the Walgraef–Aifantis model. The model consists of a set of partial differential equations of the reaction–diffusion type in the one dimensional finite space with two different diffusion-like coefficients, for the mobile (free to move when the applied resolved shear stress in the slip plane exceeds a certain threshold) and for the immobile (of slow movement or trapped) dislocations. We derive analytically the Turing spatial and Andronov–Hopf temporal instabilities emanating from the homogeneous solutions and construct the complete bifurcation diagram of the far-from-equilibrium spatio-temporal patterns, with respect to the applied stress and the size of the domain. Finally, we analyze the symmetric properties of all branches of both steady and oscillating far-from-equilibrium regimes." @default.
- W2790804407 created "2018-03-29" @default.
- W2790804407 creator A5078281205 @default.
- W2790804407 creator A5079420036 @default.
- W2790804407 creator A5090389995 @default.
- W2790804407 creator A5091118133 @default.
- W2790804407 date "2018-06-01" @default.
- W2790804407 modified "2023-09-23" @default.
- W2790804407 title "Analytical and numerical bifurcation analysis of dislocation pattern formation of the Walgraef–Aifantis model" @default.
- W2790804407 cites W1577785174 @default.
- W2790804407 cites W1963680456 @default.
- W2790804407 cites W1965762474 @default.
- W2790804407 cites W1966318693 @default.
- W2790804407 cites W1976644810 @default.
- W2790804407 cites W1978552392 @default.
- W2790804407 cites W1982708027 @default.
- W2790804407 cites W1983692633 @default.
- W2790804407 cites W1985122168 @default.
- W2790804407 cites W1985261065 @default.
- W2790804407 cites W1992560164 @default.
- W2790804407 cites W1993999944 @default.
- W2790804407 cites W1994213727 @default.
- W2790804407 cites W1995040333 @default.
- W2790804407 cites W1997276296 @default.
- W2790804407 cites W1999360680 @default.
- W2790804407 cites W1999747351 @default.
- W2790804407 cites W2004297592 @default.
- W2790804407 cites W2012284188 @default.
- W2790804407 cites W2023241513 @default.
- W2790804407 cites W2023622265 @default.
- W2790804407 cites W2023838506 @default.
- W2790804407 cites W2025352117 @default.
- W2790804407 cites W2025988628 @default.
- W2790804407 cites W2030976617 @default.
- W2790804407 cites W2035494096 @default.
- W2790804407 cites W2040500915 @default.
- W2790804407 cites W2042775858 @default.
- W2790804407 cites W2047003913 @default.
- W2790804407 cites W2049111396 @default.
- W2790804407 cites W2051764542 @default.
- W2790804407 cites W2052637367 @default.
- W2790804407 cites W2054239928 @default.
- W2790804407 cites W2058919885 @default.
- W2790804407 cites W2059244117 @default.
- W2790804407 cites W2064281802 @default.
- W2790804407 cites W2067172337 @default.
- W2790804407 cites W2070061690 @default.
- W2790804407 cites W2070460788 @default.
- W2790804407 cites W2072802230 @default.
- W2790804407 cites W2081696580 @default.
- W2790804407 cites W2085572320 @default.
- W2790804407 cites W2086126894 @default.
- W2790804407 cites W2087783194 @default.
- W2790804407 cites W2090921914 @default.
- W2790804407 cites W2091132441 @default.
- W2790804407 cites W2091897448 @default.
- W2790804407 cites W2093260492 @default.
- W2790804407 cites W2094576384 @default.
- W2790804407 cites W2096849638 @default.
- W2790804407 cites W2102910081 @default.
- W2790804407 cites W2126544426 @default.
- W2790804407 cites W2128559698 @default.
- W2790804407 cites W2135669306 @default.
- W2790804407 cites W2138634725 @default.
- W2790804407 cites W2139215311 @default.
- W2790804407 cites W2140113187 @default.
- W2790804407 cites W2144675680 @default.
- W2790804407 cites W2158872938 @default.
- W2790804407 cites W2397918912 @default.
- W2790804407 cites W2761204683 @default.
- W2790804407 cites W3101887857 @default.
- W2790804407 cites W350873532 @default.
- W2790804407 cites W4238288431 @default.
- W2790804407 cites W4248234510 @default.
- W2790804407 doi "https://doi.org/10.1016/j.ijnonlinmec.2018.03.002" @default.
- W2790804407 hasPublicationYear "2018" @default.
- W2790804407 type Work @default.
- W2790804407 sameAs 2790804407 @default.
- W2790804407 citedByCount "4" @default.
- W2790804407 countsByYear W27908044072021 @default.
- W2790804407 countsByYear W27908044072022 @default.
- W2790804407 countsByYear W27908044072023 @default.
- W2790804407 crossrefType "journal-article" @default.
- W2790804407 hasAuthorship W2790804407A5078281205 @default.
- W2790804407 hasAuthorship W2790804407A5079420036 @default.
- W2790804407 hasAuthorship W2790804407A5090389995 @default.
- W2790804407 hasAuthorship W2790804407A5091118133 @default.
- W2790804407 hasConcept C121332964 @default.
- W2790804407 hasConcept C121864883 @default.
- W2790804407 hasConcept C134306372 @default.
- W2790804407 hasConcept C158622935 @default.
- W2790804407 hasConcept C159122135 @default.
- W2790804407 hasConcept C172435161 @default.
- W2790804407 hasConcept C207016750 @default.
- W2790804407 hasConcept C26873012 @default.
- W2790804407 hasConcept C2781349735 @default.
- W2790804407 hasConcept C33923547 @default.
- W2790804407 hasConcept C54355233 @default.