Matches in SemOpenAlex for { <https://semopenalex.org/work/W2790899428> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2790899428 endingPage "1994" @default.
- W2790899428 startingPage "1985" @default.
- W2790899428 abstract "Large amounts of data are generated by the intelligent transportation system (ITS) everyday. It exceeds the storage and processing capacity of conventional systems, and also doesn’t fit the structures of current database. Therefore, it is necessary to use efficient methodology addressing the challe nges. Vehicle logo recognition (VLR) is a significant application in ITS. VLR is difficult due to the geometric distortions as well as various imaging situations simultaneously. However, traditional methods and hand-crafted features have many limitations. Convolutional neural network (CNN) enjoys the success in many machine vision tasks. Inspired by the excellent performance of CNN, we design and develop a novel VLR distributed system framework based on Hadoop ecosystem and deeplearning. We propose a Mapreduce based CNN called MRCNN to train the networks, which significantly increases the training speed and reduces the computation cost simultaneously. Furthermore, unlike previous classical CNN starting from a random initialization, we propose a novel genetic algorithm (GA) global optimization and Bayesian regularization approach called GABR in order to initialize the weights of classifier, which help prevent the overfitting and avoid the local optima. Compared with other algorithms, the proposed method performs best and increases the recognition accuracy with good initial weights optimized by GABR. The results show that the distributed system framework and proposed algorithms are suitable for real-world applications of VLR." @default.
- W2790899428 created "2018-03-29" @default.
- W2790899428 creator A5061108304 @default.
- W2790899428 creator A5068951778 @default.
- W2790899428 date "2018-03-22" @default.
- W2790899428 modified "2023-10-14" @default.
- W2790899428 title "Effective vehicle logo recognition in real-world application using mapreduce based convolutional neural networks with a pre-training strategy" @default.
- W2790899428 cites W1498436455 @default.
- W2790899428 cites W1932847118 @default.
- W2790899428 cites W1976948919 @default.
- W2790899428 cites W1984020445 @default.
- W2790899428 cites W2022508996 @default.
- W2790899428 cites W2068470708 @default.
- W2790899428 cites W2069428064 @default.
- W2790899428 cites W2080829704 @default.
- W2790899428 cites W2097117768 @default.
- W2790899428 cites W2110177572 @default.
- W2790899428 cites W2111051539 @default.
- W2790899428 cites W2120432001 @default.
- W2790899428 cites W2122451825 @default.
- W2790899428 cites W2124450022 @default.
- W2790899428 cites W2125085157 @default.
- W2790899428 cites W2126715624 @default.
- W2790899428 cites W2132424367 @default.
- W2790899428 cites W2139323304 @default.
- W2790899428 cites W2141125852 @default.
- W2790899428 cites W2145287260 @default.
- W2790899428 cites W2147768505 @default.
- W2790899428 cites W2154753510 @default.
- W2790899428 cites W2168117308 @default.
- W2790899428 cites W2543461915 @default.
- W2790899428 cites W4231109964 @default.
- W2790899428 doi "https://doi.org/10.3233/jifs-17592" @default.
- W2790899428 hasPublicationYear "2018" @default.
- W2790899428 type Work @default.
- W2790899428 sameAs 2790899428 @default.
- W2790899428 citedByCount "8" @default.
- W2790899428 countsByYear W27908994282020 @default.
- W2790899428 countsByYear W27908994282021 @default.
- W2790899428 countsByYear W27908994282022 @default.
- W2790899428 countsByYear W27908994282023 @default.
- W2790899428 crossrefType "journal-article" @default.
- W2790899428 hasAuthorship W2790899428A5061108304 @default.
- W2790899428 hasAuthorship W2790899428A5068951778 @default.
- W2790899428 hasConcept C114466953 @default.
- W2790899428 hasConcept C119857082 @default.
- W2790899428 hasConcept C153180895 @default.
- W2790899428 hasConcept C154945302 @default.
- W2790899428 hasConcept C199360897 @default.
- W2790899428 hasConcept C22019652 @default.
- W2790899428 hasConcept C2778049539 @default.
- W2790899428 hasConcept C41008148 @default.
- W2790899428 hasConcept C50644808 @default.
- W2790899428 hasConcept C81363708 @default.
- W2790899428 hasConcept C95623464 @default.
- W2790899428 hasConceptScore W2790899428C114466953 @default.
- W2790899428 hasConceptScore W2790899428C119857082 @default.
- W2790899428 hasConceptScore W2790899428C153180895 @default.
- W2790899428 hasConceptScore W2790899428C154945302 @default.
- W2790899428 hasConceptScore W2790899428C199360897 @default.
- W2790899428 hasConceptScore W2790899428C22019652 @default.
- W2790899428 hasConceptScore W2790899428C2778049539 @default.
- W2790899428 hasConceptScore W2790899428C41008148 @default.
- W2790899428 hasConceptScore W2790899428C50644808 @default.
- W2790899428 hasConceptScore W2790899428C81363708 @default.
- W2790899428 hasConceptScore W2790899428C95623464 @default.
- W2790899428 hasIssue "3" @default.
- W2790899428 hasLocation W27908994281 @default.
- W2790899428 hasOpenAccess W2790899428 @default.
- W2790899428 hasPrimaryLocation W27908994281 @default.
- W2790899428 hasRelatedWork W2742991909 @default.
- W2790899428 hasRelatedWork W2767651786 @default.
- W2790899428 hasRelatedWork W2989932438 @default.
- W2790899428 hasRelatedWork W3012393889 @default.
- W2790899428 hasRelatedWork W3081496756 @default.
- W2790899428 hasRelatedWork W3099765033 @default.
- W2790899428 hasRelatedWork W3127819136 @default.
- W2790899428 hasRelatedWork W3199608561 @default.
- W2790899428 hasRelatedWork W4210794429 @default.
- W2790899428 hasRelatedWork W4225852842 @default.
- W2790899428 hasVolume "34" @default.
- W2790899428 isParatext "false" @default.
- W2790899428 isRetracted "false" @default.
- W2790899428 magId "2790899428" @default.
- W2790899428 workType "article" @default.