Matches in SemOpenAlex for { <https://semopenalex.org/work/W2791133628> ?p ?o ?g. }
- W2791133628 abstract "Abstract Online kernel methods suffer from computational and memory complexity in large-scale problems. Due to these drawbacks, budget online kernel learning and kernel approximation (low-dimensional feature map approximation) methods are widely used to speed up time and to reduce memory usage of kernel approaches. In this paper, orthogonal Gram-Schmidt explicit feature maps are applied to online kernel methods. The main advantage of these feature maps come from their orthogonality property. Utilization of these feature maps leads to mutually linearly independent dimensions of feature space, hence, reduce the redundancy in this space. These feature maps can be applied to single-pass online learning methods with l2- and l0-norm regularization to reduce the computational and memory complexity. In this paper, the proposed methods are named: 1) Online Feature Maps (OFEMs) and 2) Sparse Online Feature Maps (SOFEMs). These methods are examined for binary and multiclass single-label classification problems. Extensive experiments are compared with the results of other state-of-the-art methods on standard and real-world datasets. The experimental results show that OFEMs and SOFEMs outperform other methods in the literature." @default.
- W2791133628 created "2018-03-29" @default.
- W2791133628 creator A5031256565 @default.
- W2791133628 creator A5064885254 @default.
- W2791133628 creator A5069185272 @default.
- W2791133628 date "2018-07-01" @default.
- W2791133628 modified "2023-10-16" @default.
- W2791133628 title "Sparse online feature maps" @default.
- W2791133628 cites W1510073064 @default.
- W2791133628 cites W1560724230 @default.
- W2791133628 cites W1563088657 @default.
- W2791133628 cites W1751437809 @default.
- W2791133628 cites W1923046654 @default.
- W2791133628 cites W1966815444 @default.
- W2791133628 cites W1971947347 @default.
- W2791133628 cites W1973678258 @default.
- W2791133628 cites W1979711143 @default.
- W2791133628 cites W1986280275 @default.
- W2791133628 cites W1988813039 @default.
- W2791133628 cites W2014208709 @default.
- W2791133628 cites W201541604 @default.
- W2791133628 cites W2040870580 @default.
- W2791133628 cites W2068696370 @default.
- W2791133628 cites W2095895508 @default.
- W2791133628 cites W2100659887 @default.
- W2791133628 cites W2103736488 @default.
- W2791133628 cites W2105527258 @default.
- W2791133628 cites W2109235804 @default.
- W2791133628 cites W2109743529 @default.
- W2791133628 cites W2112796928 @default.
- W2791133628 cites W2121423746 @default.
- W2791133628 cites W2124995446 @default.
- W2791133628 cites W2125525099 @default.
- W2791133628 cites W2125621954 @default.
- W2791133628 cites W2132882064 @default.
- W2791133628 cites W2141372707 @default.
- W2791133628 cites W2144902422 @default.
- W2791133628 cites W2150621701 @default.
- W2791133628 cites W2153758911 @default.
- W2791133628 cites W2160218441 @default.
- W2791133628 cites W2171566706 @default.
- W2791133628 cites W2182347905 @default.
- W2791133628 cites W2298057126 @default.
- W2791133628 cites W2306758572 @default.
- W2791133628 cites W2408432900 @default.
- W2791133628 cites W2526794661 @default.
- W2791133628 cites W2544176167 @default.
- W2791133628 cites W2616566795 @default.
- W2791133628 cites W2616657226 @default.
- W2791133628 cites W2749216644 @default.
- W2791133628 cites W2950615391 @default.
- W2791133628 cites W2995136929 @default.
- W2791133628 cites W3038830718 @default.
- W2791133628 cites W573386291 @default.
- W2791133628 doi "https://doi.org/10.1016/j.knosys.2018.03.023" @default.
- W2791133628 hasPublicationYear "2018" @default.
- W2791133628 type Work @default.
- W2791133628 sameAs 2791133628 @default.
- W2791133628 citedByCount "0" @default.
- W2791133628 crossrefType "journal-article" @default.
- W2791133628 hasAuthorship W2791133628A5031256565 @default.
- W2791133628 hasAuthorship W2791133628A5064885254 @default.
- W2791133628 hasAuthorship W2791133628A5069185272 @default.
- W2791133628 hasConcept C11413529 @default.
- W2791133628 hasConcept C114614502 @default.
- W2791133628 hasConcept C119857082 @default.
- W2791133628 hasConcept C122280245 @default.
- W2791133628 hasConcept C12267149 @default.
- W2791133628 hasConcept C124101348 @default.
- W2791133628 hasConcept C138885662 @default.
- W2791133628 hasConcept C153180895 @default.
- W2791133628 hasConcept C154945302 @default.
- W2791133628 hasConcept C17137986 @default.
- W2791133628 hasConcept C179799912 @default.
- W2791133628 hasConcept C2524010 @default.
- W2791133628 hasConcept C2776135515 @default.
- W2791133628 hasConcept C2776401178 @default.
- W2791133628 hasConcept C33923547 @default.
- W2791133628 hasConcept C41008148 @default.
- W2791133628 hasConcept C41895202 @default.
- W2791133628 hasConcept C74193536 @default.
- W2791133628 hasConcept C83665646 @default.
- W2791133628 hasConceptScore W2791133628C11413529 @default.
- W2791133628 hasConceptScore W2791133628C114614502 @default.
- W2791133628 hasConceptScore W2791133628C119857082 @default.
- W2791133628 hasConceptScore W2791133628C122280245 @default.
- W2791133628 hasConceptScore W2791133628C12267149 @default.
- W2791133628 hasConceptScore W2791133628C124101348 @default.
- W2791133628 hasConceptScore W2791133628C138885662 @default.
- W2791133628 hasConceptScore W2791133628C153180895 @default.
- W2791133628 hasConceptScore W2791133628C154945302 @default.
- W2791133628 hasConceptScore W2791133628C17137986 @default.
- W2791133628 hasConceptScore W2791133628C179799912 @default.
- W2791133628 hasConceptScore W2791133628C2524010 @default.
- W2791133628 hasConceptScore W2791133628C2776135515 @default.
- W2791133628 hasConceptScore W2791133628C2776401178 @default.
- W2791133628 hasConceptScore W2791133628C33923547 @default.
- W2791133628 hasConceptScore W2791133628C41008148 @default.
- W2791133628 hasConceptScore W2791133628C41895202 @default.
- W2791133628 hasConceptScore W2791133628C74193536 @default.