Matches in SemOpenAlex for { <https://semopenalex.org/work/W2791167563> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2791167563 abstract "Kernel parameter of kernel principal component analysis (KPCA) has a great effect on the extraction of useful information from high dimensional and nonlinear protein data. If value of it is set unreasonably, the dimension-reduced data are insufficient for discrimination. Based on this point, a new method is proposed to search the optimal window width parameter in gaussian kernel by introducing the idea of semi-supervised learning in this paper. We firstly employed the particle swarm optimization (PSO) algorithm to search the optimal interval of kernel parameter through a new discriminant criterion. Then the traversing method was applied to search the optimal parameter in the obtained interval. To verify the feasibility of the proposed approach, which is named as KPCA based on semi-supervised dimensionality reduction, numerical experiments were conducted on a public dataset to predict protein subnuclear location with the classifier of k-nearest neighbors (KNN). The final results by Jackknife test prove that our method is efficient and significative." @default.
- W2791167563 created "2018-03-29" @default.
- W2791167563 creator A5005637992 @default.
- W2791167563 creator A5040105964 @default.
- W2791167563 date "2017-10-01" @default.
- W2791167563 modified "2023-09-25" @default.
- W2791167563 title "Kernel principal component analysis based on semi-supervised dimensionality reduction and its application on protein subnuclear localization" @default.
- W2791167563 cites W2019950298 @default.
- W2791167563 cites W2045255427 @default.
- W2791167563 cites W2050699972 @default.
- W2791167563 cites W2077110191 @default.
- W2791167563 cites W2085008830 @default.
- W2791167563 cites W2106340499 @default.
- W2791167563 cites W2130972944 @default.
- W2791167563 cites W2149803014 @default.
- W2791167563 cites W2152632846 @default.
- W2791167563 cites W2157142295 @default.
- W2791167563 cites W2201036356 @default.
- W2791167563 cites W2221500417 @default.
- W2791167563 cites W2320641533 @default.
- W2791167563 cites W2325169499 @default.
- W2791167563 cites W2329983763 @default.
- W2791167563 cites W2410264812 @default.
- W2791167563 cites W2469738399 @default.
- W2791167563 cites W2586511257 @default.
- W2791167563 cites W4248058040 @default.
- W2791167563 doi "https://doi.org/10.1109/cisp-bmei.2017.8302284" @default.
- W2791167563 hasPublicationYear "2017" @default.
- W2791167563 type Work @default.
- W2791167563 sameAs 2791167563 @default.
- W2791167563 citedByCount "1" @default.
- W2791167563 countsByYear W27911675632022 @default.
- W2791167563 crossrefType "proceedings-article" @default.
- W2791167563 hasAuthorship W2791167563A5005637992 @default.
- W2791167563 hasAuthorship W2791167563A5040105964 @default.
- W2791167563 hasConcept C114614502 @default.
- W2791167563 hasConcept C122280245 @default.
- W2791167563 hasConcept C12267149 @default.
- W2791167563 hasConcept C153180895 @default.
- W2791167563 hasConcept C154945302 @default.
- W2791167563 hasConcept C182335926 @default.
- W2791167563 hasConcept C27438332 @default.
- W2791167563 hasConcept C33923547 @default.
- W2791167563 hasConcept C41008148 @default.
- W2791167563 hasConcept C70518039 @default.
- W2791167563 hasConcept C74193536 @default.
- W2791167563 hasConceptScore W2791167563C114614502 @default.
- W2791167563 hasConceptScore W2791167563C122280245 @default.
- W2791167563 hasConceptScore W2791167563C12267149 @default.
- W2791167563 hasConceptScore W2791167563C153180895 @default.
- W2791167563 hasConceptScore W2791167563C154945302 @default.
- W2791167563 hasConceptScore W2791167563C182335926 @default.
- W2791167563 hasConceptScore W2791167563C27438332 @default.
- W2791167563 hasConceptScore W2791167563C33923547 @default.
- W2791167563 hasConceptScore W2791167563C41008148 @default.
- W2791167563 hasConceptScore W2791167563C70518039 @default.
- W2791167563 hasConceptScore W2791167563C74193536 @default.
- W2791167563 hasLocation W27911675631 @default.
- W2791167563 hasOpenAccess W2791167563 @default.
- W2791167563 hasPrimaryLocation W27911675631 @default.
- W2791167563 hasRelatedWork W1488165778 @default.
- W2791167563 hasRelatedWork W1756633271 @default.
- W2791167563 hasRelatedWork W1998640076 @default.
- W2791167563 hasRelatedWork W2071626605 @default.
- W2791167563 hasRelatedWork W2110459882 @default.
- W2791167563 hasRelatedWork W2145759202 @default.
- W2791167563 hasRelatedWork W2148585830 @default.
- W2791167563 hasRelatedWork W2375053148 @default.
- W2791167563 hasRelatedWork W2378320533 @default.
- W2791167563 hasRelatedWork W2787023326 @default.
- W2791167563 isParatext "false" @default.
- W2791167563 isRetracted "false" @default.
- W2791167563 magId "2791167563" @default.
- W2791167563 workType "article" @default.