Matches in SemOpenAlex for { <https://semopenalex.org/work/W2791170469> ?p ?o ?g. }
- W2791170469 endingPage "3052" @default.
- W2791170469 startingPage "3012" @default.
- W2791170469 abstract "This paper considers model averaging for the ordered probit and nested logit models, which are widely used in empirical research. Within the frameworks of these models, we examine a range of model averaging methods, including the jackknife method, which is proved to have an optimal asymptotic property in this paper. We conduct a large-scale simulation study to examine the behaviour of these model averaging estimators in finite samples, and draw comparisons with model selection estimators. Our results show that while neither averaging nor selection is a consistently better strategy, model selection results in the poorest estimates far more frequently than averaging, and more often than not, averaging yields superior estimates. Among the averaging methods considered, the one based on a smoothed version of the Bayesian Information criterion frequently produces the most accurate estimates. In three real data applications, we demonstrate the usefulness of model averaging in mitigating problems associated with the ‘replication crisis’ that commonly arises with model selection." @default.
- W2791170469 created "2018-03-29" @default.
- W2791170469 creator A5039844960 @default.
- W2791170469 creator A5056471202 @default.
- W2791170469 creator A5070462526 @default.
- W2791170469 creator A5088639302 @default.
- W2791170469 date "2018-03-21" @default.
- W2791170469 modified "2023-09-26" @default.
- W2791170469 title "A model averaging approach for the ordered probit and nested logit models with applications" @default.
- W2791170469 cites W1502876530 @default.
- W2791170469 cites W1517600448 @default.
- W2791170469 cites W1525442905 @default.
- W2791170469 cites W1526718608 @default.
- W2791170469 cites W1543115787 @default.
- W2791170469 cites W1600300577 @default.
- W2791170469 cites W1860366881 @default.
- W2791170469 cites W1994672023 @default.
- W2791170469 cites W1995147694 @default.
- W2791170469 cites W1998576834 @default.
- W2791170469 cites W2003103177 @default.
- W2791170469 cites W2006100591 @default.
- W2791170469 cites W2010647378 @default.
- W2791170469 cites W2014417816 @default.
- W2791170469 cites W2021136548 @default.
- W2791170469 cites W2022587791 @default.
- W2791170469 cites W2022943305 @default.
- W2791170469 cites W2028763699 @default.
- W2791170469 cites W2031913335 @default.
- W2791170469 cites W2042621574 @default.
- W2791170469 cites W2052025831 @default.
- W2791170469 cites W2056325729 @default.
- W2791170469 cites W2063601176 @default.
- W2791170469 cites W2063921469 @default.
- W2791170469 cites W2065199005 @default.
- W2791170469 cites W2067838071 @default.
- W2791170469 cites W2070674494 @default.
- W2791170469 cites W2078502317 @default.
- W2791170469 cites W2082502608 @default.
- W2791170469 cites W2108443364 @default.
- W2791170469 cites W2116480496 @default.
- W2791170469 cites W2122196572 @default.
- W2791170469 cites W2125251038 @default.
- W2791170469 cites W2132744859 @default.
- W2791170469 cites W2139896753 @default.
- W2791170469 cites W2141895117 @default.
- W2791170469 cites W2146081698 @default.
- W2791170469 cites W2158196600 @default.
- W2791170469 cites W2288243288 @default.
- W2791170469 cites W2562162676 @default.
- W2791170469 cites W2921430350 @default.
- W2791170469 cites W3100088624 @default.
- W2791170469 cites W3121321091 @default.
- W2791170469 cites W3124442571 @default.
- W2791170469 cites W3124986623 @default.
- W2791170469 cites W4246784033 @default.
- W2791170469 cites W4252684946 @default.
- W2791170469 doi "https://doi.org/10.1080/02664763.2018.1450367" @default.
- W2791170469 hasPublicationYear "2018" @default.
- W2791170469 type Work @default.
- W2791170469 sameAs 2791170469 @default.
- W2791170469 citedByCount "6" @default.
- W2791170469 countsByYear W27911704692019 @default.
- W2791170469 countsByYear W27911704692020 @default.
- W2791170469 countsByYear W27911704692021 @default.
- W2791170469 countsByYear W27911704692022 @default.
- W2791170469 crossrefType "journal-article" @default.
- W2791170469 hasAuthorship W2791170469A5039844960 @default.
- W2791170469 hasAuthorship W2791170469A5056471202 @default.
- W2791170469 hasAuthorship W2791170469A5070462526 @default.
- W2791170469 hasAuthorship W2791170469A5088639302 @default.
- W2791170469 hasBestOaLocation W27911704692 @default.
- W2791170469 hasConcept C103000020 @default.
- W2791170469 hasConcept C105795698 @default.
- W2791170469 hasConcept C107673813 @default.
- W2791170469 hasConcept C124101348 @default.
- W2791170469 hasConcept C140331021 @default.
- W2791170469 hasConcept C149782125 @default.
- W2791170469 hasConcept C154945302 @default.
- W2791170469 hasConcept C160234255 @default.
- W2791170469 hasConcept C184314375 @default.
- W2791170469 hasConcept C185429906 @default.
- W2791170469 hasConcept C33923547 @default.
- W2791170469 hasConcept C41008148 @default.
- W2791170469 hasConcept C5655090 @default.
- W2791170469 hasConcept C67257552 @default.
- W2791170469 hasConcept C81790035 @default.
- W2791170469 hasConcept C81917197 @default.
- W2791170469 hasConcept C93959086 @default.
- W2791170469 hasConceptScore W2791170469C103000020 @default.
- W2791170469 hasConceptScore W2791170469C105795698 @default.
- W2791170469 hasConceptScore W2791170469C107673813 @default.
- W2791170469 hasConceptScore W2791170469C124101348 @default.
- W2791170469 hasConceptScore W2791170469C140331021 @default.
- W2791170469 hasConceptScore W2791170469C149782125 @default.
- W2791170469 hasConceptScore W2791170469C154945302 @default.
- W2791170469 hasConceptScore W2791170469C160234255 @default.
- W2791170469 hasConceptScore W2791170469C184314375 @default.
- W2791170469 hasConceptScore W2791170469C185429906 @default.