Matches in SemOpenAlex for { <https://semopenalex.org/work/W2791200162> ?p ?o ?g. }
- W2791200162 endingPage "65" @default.
- W2791200162 startingPage "50" @default.
- W2791200162 abstract "We consider estimation and inference in fractionally integrated time series models driven by shocks which can display conditional and unconditional heteroscedasticity of unknown form. Although the standard conditional sum-of-squares (CSS) estimator remains consistent and asymptotically normal in such cases, unconditional heteroscedasticity inflates its variance matrix by a scalar quantity, λ>1, thereby inducing a loss in efficiency relative to the unconditionally homoscedastic case, λ = 1. We propose an adaptive version of the CSS estimator, based on nonparametric kernel-based estimation of the unconditional volatility process. We show that adaptive estimation eliminates the factor λ from the variance matrix, thereby delivering the same asymptotic efficiency as that attained by the standard CSS estimator in the unconditionally homoscedastic case and, hence, asymptotic efficiency under Gaussianity. Importantly, the asymptotic analysis is based on a novel proof strategy, which does not require consistent estimation (in the sup norm) of the volatility process. Consequently, we are able to work under a weaker set of assumptions than those employed in the extant literature. The asymptotic variance matrices of both the standard and adaptive CSS (ACSS) estimators depend on any weak parametric autocorrelation present in the fractional model and any conditional heteroscedasticity in the shocks. Consequently, asymptotically pivotal inference can be achieved through the development of confidence regions or hypothesis tests using either heteroscedasticity-robust standard errors and/or a wild bootstrap. Monte Carlo simulations and empirical applications illustrate the practical usefulness of the methods proposed." @default.
- W2791200162 created "2018-03-29" @default.
- W2791200162 creator A5010212537 @default.
- W2791200162 creator A5032349799 @default.
- W2791200162 creator A5068883981 @default.
- W2791200162 date "2020-06-29" @default.
- W2791200162 modified "2023-10-13" @default.
- W2791200162 title "Adaptive Inference in Heteroscedastic Fractional Time Series Models" @default.
- W2791200162 cites W1483469716 @default.
- W2791200162 cites W1508427692 @default.
- W2791200162 cites W1518151746 @default.
- W2791200162 cites W1594672156 @default.
- W2791200162 cites W1820206506 @default.
- W2791200162 cites W1919448723 @default.
- W2791200162 cites W1966146562 @default.
- W2791200162 cites W1966617811 @default.
- W2791200162 cites W1969604147 @default.
- W2791200162 cites W1973694910 @default.
- W2791200162 cites W1979325061 @default.
- W2791200162 cites W1979565425 @default.
- W2791200162 cites W1982581735 @default.
- W2791200162 cites W1986372184 @default.
- W2791200162 cites W1998455469 @default.
- W2791200162 cites W1999821801 @default.
- W2791200162 cites W2003320809 @default.
- W2791200162 cites W2012431222 @default.
- W2791200162 cites W2014608908 @default.
- W2791200162 cites W2019463243 @default.
- W2791200162 cites W2019505791 @default.
- W2791200162 cites W2021853138 @default.
- W2791200162 cites W2023718188 @default.
- W2791200162 cites W2035196103 @default.
- W2791200162 cites W2044921758 @default.
- W2791200162 cites W2046738567 @default.
- W2791200162 cites W2051726817 @default.
- W2791200162 cites W2065541420 @default.
- W2791200162 cites W2069319670 @default.
- W2791200162 cites W2072838328 @default.
- W2791200162 cites W2073749196 @default.
- W2791200162 cites W2089309985 @default.
- W2791200162 cites W2093272448 @default.
- W2791200162 cites W2101497257 @default.
- W2791200162 cites W2104499761 @default.
- W2791200162 cites W2105563671 @default.
- W2791200162 cites W2110067385 @default.
- W2791200162 cites W2112938220 @default.
- W2791200162 cites W2140585983 @default.
- W2791200162 cites W2141676311 @default.
- W2791200162 cites W2146270957 @default.
- W2791200162 cites W2146521696 @default.
- W2791200162 cites W2159636503 @default.
- W2791200162 cites W2170353114 @default.
- W2791200162 cites W2606738787 @default.
- W2791200162 cites W2740869946 @default.
- W2791200162 cites W3023275733 @default.
- W2791200162 cites W3105689151 @default.
- W2791200162 cites W3122904576 @default.
- W2791200162 cites W3124235709 @default.
- W2791200162 cites W3125437539 @default.
- W2791200162 cites W3125987794 @default.
- W2791200162 cites W4211006520 @default.
- W2791200162 cites W4246691617 @default.
- W2791200162 cites W4246784033 @default.
- W2791200162 cites W573801292 @default.
- W2791200162 doi "https://doi.org/10.1080/07350015.2020.1773275" @default.
- W2791200162 hasPublicationYear "2020" @default.
- W2791200162 type Work @default.
- W2791200162 sameAs 2791200162 @default.
- W2791200162 citedByCount "3" @default.
- W2791200162 countsByYear W27912001622021 @default.
- W2791200162 countsByYear W27912001622022 @default.
- W2791200162 crossrefType "journal-article" @default.
- W2791200162 hasAuthorship W2791200162A5010212537 @default.
- W2791200162 hasAuthorship W2791200162A5032349799 @default.
- W2791200162 hasAuthorship W2791200162A5068883981 @default.
- W2791200162 hasBestOaLocation W27912001622 @default.
- W2791200162 hasConcept C101104100 @default.
- W2791200162 hasConcept C104409967 @default.
- W2791200162 hasConcept C105795698 @default.
- W2791200162 hasConcept C119047807 @default.
- W2791200162 hasConcept C149782125 @default.
- W2791200162 hasConcept C185429906 @default.
- W2791200162 hasConcept C23922673 @default.
- W2791200162 hasConcept C28826006 @default.
- W2791200162 hasConcept C33923547 @default.
- W2791200162 hasConcept C65778772 @default.
- W2791200162 hasConcept C91602232 @default.
- W2791200162 hasConceptScore W2791200162C101104100 @default.
- W2791200162 hasConceptScore W2791200162C104409967 @default.
- W2791200162 hasConceptScore W2791200162C105795698 @default.
- W2791200162 hasConceptScore W2791200162C119047807 @default.
- W2791200162 hasConceptScore W2791200162C149782125 @default.
- W2791200162 hasConceptScore W2791200162C185429906 @default.
- W2791200162 hasConceptScore W2791200162C23922673 @default.
- W2791200162 hasConceptScore W2791200162C28826006 @default.
- W2791200162 hasConceptScore W2791200162C33923547 @default.
- W2791200162 hasConceptScore W2791200162C65778772 @default.
- W2791200162 hasConceptScore W2791200162C91602232 @default.