Matches in SemOpenAlex for { <https://semopenalex.org/work/W2791220068> ?p ?o ?g. }
- W2791220068 endingPage "2261" @default.
- W2791220068 startingPage "2249" @default.
- W2791220068 abstract "Human detection has received great attention during the past few decades, which is yet still a challenging problem. In this paper, we focus on the problem of 3-D human detection, i.e., finding the human bodies and determining their 3-D coordinates in complex 3-D space using depth data only. Since the traditional sliding-window-based approaches for target localization are time-consuming and the recent deep-learning-based object detectors generate too many region proposals, we propose to utilize the candidate head-top locating stage to efficiently and quickly find the plausible head-top locations. In the second stage, we propose a Depth map, Multiorder depth template, and Height difference map representation encoding three channels of information for each candidate region to utilize the neural network pretrained on large-scale well-annotated datasets to classify the candidate regions. We evaluate our method on four publicly available challenging datasets. Extensive experimental results demonstrate that the proposed method is superior to the state-of-the-art methods while achieving real-time performance." @default.
- W2791220068 created "2018-03-29" @default.
- W2791220068 creator A5023671569 @default.
- W2791220068 creator A5026431700 @default.
- W2791220068 creator A5037138742 @default.
- W2791220068 creator A5047949123 @default.
- W2791220068 creator A5049079081 @default.
- W2791220068 creator A5074422516 @default.
- W2791220068 date "2018-09-01" @default.
- W2791220068 modified "2023-09-29" @default.
- W2791220068 title "Robust 3-D Human Detection in Complex Environments With a Depth Camera" @default.
- W2791220068 cites W1536680647 @default.
- W2791220068 cites W1565402342 @default.
- W2791220068 cites W1964191339 @default.
- W2791220068 cites W1976818984 @default.
- W2791220068 cites W1992825118 @default.
- W2791220068 cites W2000825879 @default.
- W2791220068 cites W2010340098 @default.
- W2791220068 cites W2031454541 @default.
- W2791220068 cites W2070217198 @default.
- W2791220068 cites W2097117768 @default.
- W2791220068 cites W2099570340 @default.
- W2791220068 cites W2102605133 @default.
- W2791220068 cites W2107775979 @default.
- W2791220068 cites W2108598243 @default.
- W2791220068 cites W2120419212 @default.
- W2791220068 cites W2120907774 @default.
- W2791220068 cites W2123761428 @default.
- W2791220068 cites W2131748762 @default.
- W2791220068 cites W2132985428 @default.
- W2791220068 cites W2137504719 @default.
- W2791220068 cites W2150066425 @default.
- W2791220068 cites W2150183285 @default.
- W2791220068 cites W2155893237 @default.
- W2791220068 cites W2156547346 @default.
- W2791220068 cites W2161969291 @default.
- W2791220068 cites W2162741153 @default.
- W2791220068 cites W2162846286 @default.
- W2791220068 cites W2168195382 @default.
- W2791220068 cites W2168356304 @default.
- W2791220068 cites W2172156083 @default.
- W2791220068 cites W2253429366 @default.
- W2791220068 cites W2395235827 @default.
- W2791220068 cites W2487852963 @default.
- W2791220068 cites W2509838350 @default.
- W2791220068 cites W2510185399 @default.
- W2791220068 cites W2548197316 @default.
- W2791220068 cites W2618530766 @default.
- W2791220068 cites W2736334449 @default.
- W2791220068 cites W2751912274 @default.
- W2791220068 cites W2753752584 @default.
- W2791220068 cites W2963037989 @default.
- W2791220068 cites W3101203783 @default.
- W2791220068 cites W639708223 @default.
- W2791220068 cites W855464613 @default.
- W2791220068 doi "https://doi.org/10.1109/tmm.2018.2803526" @default.
- W2791220068 hasPublicationYear "2018" @default.
- W2791220068 type Work @default.
- W2791220068 sameAs 2791220068 @default.
- W2791220068 citedByCount "31" @default.
- W2791220068 countsByYear W27912200682018 @default.
- W2791220068 countsByYear W27912200682019 @default.
- W2791220068 countsByYear W27912200682020 @default.
- W2791220068 countsByYear W27912200682021 @default.
- W2791220068 countsByYear W27912200682022 @default.
- W2791220068 countsByYear W27912200682023 @default.
- W2791220068 crossrefType "journal-article" @default.
- W2791220068 hasAuthorship W2791220068A5023671569 @default.
- W2791220068 hasAuthorship W2791220068A5026431700 @default.
- W2791220068 hasAuthorship W2791220068A5037138742 @default.
- W2791220068 hasAuthorship W2791220068A5047949123 @default.
- W2791220068 hasAuthorship W2791220068A5049079081 @default.
- W2791220068 hasAuthorship W2791220068A5074422516 @default.
- W2791220068 hasConcept C102392041 @default.
- W2791220068 hasConcept C108583219 @default.
- W2791220068 hasConcept C111919701 @default.
- W2791220068 hasConcept C120665830 @default.
- W2791220068 hasConcept C121332964 @default.
- W2791220068 hasConcept C125411270 @default.
- W2791220068 hasConcept C153180895 @default.
- W2791220068 hasConcept C154945302 @default.
- W2791220068 hasConcept C17744445 @default.
- W2791220068 hasConcept C192209626 @default.
- W2791220068 hasConcept C199539241 @default.
- W2791220068 hasConcept C2776151529 @default.
- W2791220068 hasConcept C2776359362 @default.
- W2791220068 hasConcept C2778751112 @default.
- W2791220068 hasConcept C2781238097 @default.
- W2791220068 hasConcept C31972630 @default.
- W2791220068 hasConcept C41008148 @default.
- W2791220068 hasConcept C76155785 @default.
- W2791220068 hasConcept C94625758 @default.
- W2791220068 hasConcept C94915269 @default.
- W2791220068 hasConceptScore W2791220068C102392041 @default.
- W2791220068 hasConceptScore W2791220068C108583219 @default.
- W2791220068 hasConceptScore W2791220068C111919701 @default.
- W2791220068 hasConceptScore W2791220068C120665830 @default.
- W2791220068 hasConceptScore W2791220068C121332964 @default.