Matches in SemOpenAlex for { <https://semopenalex.org/work/W2791243997> ?p ?o ?g. }
- W2791243997 endingPage "279" @default.
- W2791243997 startingPage "272" @default.
- W2791243997 abstract "Genetic algorithm is employed for optimum designing of patient specific dental implants with varying dimension and porosity. It is generally recommended that, the micro strain at the bone implant interface should be around 1500–3000. The porous dental implant needs to be designed in such a way that the micro stain remains within the above range, and a value close to 2500 micro strain is most desired. In this design problem, the most important constraint is that the implant stress should be limited within 350 MPa as titanium alloy was considered as implant material. The above attributes are to be achieved per the varying bone conditions of the patients to design a patient specific prosthesis. This design problem is expressed as an optimization problem using the desirability function, where the data generated by finite element analysis is converted to an artificial neural network model. The output of the neural network model is converted within a range of 0–1 using desirability function, where the maximum value is reached at the most desired micro strain of 2500. This hybrid model of neural network and desirability function is used as the objective function for the optimization problem using genetic algorithm. Another neural network model describing the implant stress is used as the constraint. The optimum solutions achieved from ANN and GA are validated again through finite element method. Without doing stress analysis by FEM, the ANN models are used for measuring the fitness of the members of the population during optimization. This would predict the optimum dimension of dental implant made of Titanium alloy with most favorable porosity percentage for better ossiointegration for a patient per bone condition." @default.
- W2791243997 created "2018-03-29" @default.
- W2791243997 creator A5030860757 @default.
- W2791243997 creator A5041368759 @default.
- W2791243997 creator A5067649520 @default.
- W2791243997 creator A5079009407 @default.
- W2791243997 creator A5080801448 @default.
- W2791243997 date "2018-04-01" @default.
- W2791243997 modified "2023-10-18" @default.
- W2791243997 title "Design of patient specific dental implant using FE analysis and computational intelligence techniques" @default.
- W2791243997 cites W1591632996 @default.
- W2791243997 cites W1968098666 @default.
- W2791243997 cites W1984559752 @default.
- W2791243997 cites W2005442568 @default.
- W2791243997 cites W2008482400 @default.
- W2791243997 cites W2010554297 @default.
- W2791243997 cites W2022923229 @default.
- W2791243997 cites W2034114880 @default.
- W2791243997 cites W2060362957 @default.
- W2791243997 cites W2063458400 @default.
- W2791243997 cites W2067360855 @default.
- W2791243997 cites W2071651834 @default.
- W2791243997 cites W2092340788 @default.
- W2791243997 cites W2094796654 @default.
- W2791243997 cites W2103968597 @default.
- W2791243997 cites W2115962986 @default.
- W2791243997 cites W2133565952 @default.
- W2791243997 cites W2169053895 @default.
- W2791243997 cites W2193132240 @default.
- W2791243997 cites W2217496271 @default.
- W2791243997 cites W414825292 @default.
- W2791243997 cites W4232741888 @default.
- W2791243997 doi "https://doi.org/10.1016/j.asoc.2018.01.025" @default.
- W2791243997 hasPublicationYear "2018" @default.
- W2791243997 type Work @default.
- W2791243997 sameAs 2791243997 @default.
- W2791243997 citedByCount "54" @default.
- W2791243997 countsByYear W27912439972019 @default.
- W2791243997 countsByYear W27912439972020 @default.
- W2791243997 countsByYear W27912439972021 @default.
- W2791243997 countsByYear W27912439972022 @default.
- W2791243997 countsByYear W27912439972023 @default.
- W2791243997 crossrefType "journal-article" @default.
- W2791243997 hasAuthorship W2791243997A5030860757 @default.
- W2791243997 hasAuthorship W2791243997A5041368759 @default.
- W2791243997 hasAuthorship W2791243997A5067649520 @default.
- W2791243997 hasAuthorship W2791243997A5079009407 @default.
- W2791243997 hasAuthorship W2791243997A5080801448 @default.
- W2791243997 hasConcept C119857082 @default.
- W2791243997 hasConcept C126255220 @default.
- W2791243997 hasConcept C127413603 @default.
- W2791243997 hasConcept C135628077 @default.
- W2791243997 hasConcept C136229726 @default.
- W2791243997 hasConcept C14036430 @default.
- W2791243997 hasConcept C141071460 @default.
- W2791243997 hasConcept C154945302 @default.
- W2791243997 hasConcept C159985019 @default.
- W2791243997 hasConcept C192562407 @default.
- W2791243997 hasConcept C202444582 @default.
- W2791243997 hasConcept C204323151 @default.
- W2791243997 hasConcept C2776036281 @default.
- W2791243997 hasConcept C2780338112 @default.
- W2791243997 hasConcept C2781411149 @default.
- W2791243997 hasConcept C33676613 @default.
- W2791243997 hasConcept C33923547 @default.
- W2791243997 hasConcept C41008148 @default.
- W2791243997 hasConcept C50644808 @default.
- W2791243997 hasConcept C66938386 @default.
- W2791243997 hasConcept C71924100 @default.
- W2791243997 hasConcept C78458016 @default.
- W2791243997 hasConcept C78519656 @default.
- W2791243997 hasConcept C86803240 @default.
- W2791243997 hasConcept C8880873 @default.
- W2791243997 hasConceptScore W2791243997C119857082 @default.
- W2791243997 hasConceptScore W2791243997C126255220 @default.
- W2791243997 hasConceptScore W2791243997C127413603 @default.
- W2791243997 hasConceptScore W2791243997C135628077 @default.
- W2791243997 hasConceptScore W2791243997C136229726 @default.
- W2791243997 hasConceptScore W2791243997C14036430 @default.
- W2791243997 hasConceptScore W2791243997C141071460 @default.
- W2791243997 hasConceptScore W2791243997C154945302 @default.
- W2791243997 hasConceptScore W2791243997C159985019 @default.
- W2791243997 hasConceptScore W2791243997C192562407 @default.
- W2791243997 hasConceptScore W2791243997C202444582 @default.
- W2791243997 hasConceptScore W2791243997C204323151 @default.
- W2791243997 hasConceptScore W2791243997C2776036281 @default.
- W2791243997 hasConceptScore W2791243997C2780338112 @default.
- W2791243997 hasConceptScore W2791243997C2781411149 @default.
- W2791243997 hasConceptScore W2791243997C33676613 @default.
- W2791243997 hasConceptScore W2791243997C33923547 @default.
- W2791243997 hasConceptScore W2791243997C41008148 @default.
- W2791243997 hasConceptScore W2791243997C50644808 @default.
- W2791243997 hasConceptScore W2791243997C66938386 @default.
- W2791243997 hasConceptScore W2791243997C71924100 @default.
- W2791243997 hasConceptScore W2791243997C78458016 @default.
- W2791243997 hasConceptScore W2791243997C78519656 @default.
- W2791243997 hasConceptScore W2791243997C86803240 @default.
- W2791243997 hasConceptScore W2791243997C8880873 @default.