Matches in SemOpenAlex for { <https://semopenalex.org/work/W2791372678> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2791372678 endingPage "14" @default.
- W2791372678 startingPage "11" @default.
- W2791372678 abstract "Truck crashes represent a significant problem on our nation’s highways. There is a great opportunity to learn about crash causation by analyzing and comparing the Large Truck Crash Causation Study (LTCCS) and naturalistic driving (ND) data. These data sets provide in-depth information, but have contrasting strengths and weaknesses. The LTCCS contains information on high-severity crashes (crashes and fatal crashes), but relied on data collected during crash investigations. The LTCCS identified principal driver errors in the crash, such as the Critical Reason, but not detailed behaviors or scenario sequences. The ND data sets relate primarily to non-crashes that are detectable from dynamic vehicle events, such as hard braking, swerve, etc., provide direct video observations of the driver and the surrounding driving scene and precise information on driver inputs (kinematics) and captured events, and provide certain types of exposure data that cannot easily be obtained using crash reconstruction data. The ND data are collected continuously, thereby capturing both safety-critical events and normative driving (i.e., baseline). The current project evaluated large-truck crash data from the LTCCS and two large-truck ND data sets, the Naturalistic Truck Driving Study and the Drowsy Driver Warning System Field Operational Test. A synthetic risk ratio analysis on the associated factor, Following Too Closely, indicated that truck drivers in the LTCCS were 1.34 times more likely to be involved in a crash, than an ND crash-relevant conflict, if they were following too closely (i.e., tailgating). Given several caveats noted in the paper, this study suggests it’s possible to use the ND data set to calculate the exposure of a given behavior and use the LTCCS data set to calculate the crash exposure to the same behavior." @default.
- W2791372678 created "2018-03-29" @default.
- W2791372678 creator A5054675429 @default.
- W2791372678 creator A5055451104 @default.
- W2791372678 creator A5065445525 @default.
- W2791372678 date "2018-03-01" @default.
- W2791372678 modified "2023-10-16" @default.
- W2791372678 title "A synthetic approach to compare the large truck crash causation study and naturalistic driving data" @default.
- W2791372678 cites W1493790738 @default.
- W2791372678 cites W2169071913 @default.
- W2791372678 cites W2592249416 @default.
- W2791372678 cites W41397276 @default.
- W2791372678 doi "https://doi.org/10.1016/j.aap.2017.12.006" @default.
- W2791372678 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29306085" @default.
- W2791372678 hasPublicationYear "2018" @default.
- W2791372678 type Work @default.
- W2791372678 sameAs 2791372678 @default.
- W2791372678 citedByCount "10" @default.
- W2791372678 countsByYear W27913726782019 @default.
- W2791372678 countsByYear W27913726782020 @default.
- W2791372678 countsByYear W27913726782021 @default.
- W2791372678 countsByYear W27913726782022 @default.
- W2791372678 countsByYear W27913726782023 @default.
- W2791372678 crossrefType "journal-article" @default.
- W2791372678 hasAuthorship W2791372678A5054675429 @default.
- W2791372678 hasAuthorship W2791372678A5055451104 @default.
- W2791372678 hasAuthorship W2791372678A5065445525 @default.
- W2791372678 hasConcept C127413603 @default.
- W2791372678 hasConcept C166151441 @default.
- W2791372678 hasConcept C171146098 @default.
- W2791372678 hasConcept C17744445 @default.
- W2791372678 hasConcept C178802073 @default.
- W2791372678 hasConcept C183469790 @default.
- W2791372678 hasConcept C199360897 @default.
- W2791372678 hasConcept C199539241 @default.
- W2791372678 hasConcept C22212356 @default.
- W2791372678 hasConcept C3017944768 @default.
- W2791372678 hasConcept C41008148 @default.
- W2791372678 hasConcept C52121051 @default.
- W2791372678 hasConcept C71924100 @default.
- W2791372678 hasConcept C99454951 @default.
- W2791372678 hasConceptScore W2791372678C127413603 @default.
- W2791372678 hasConceptScore W2791372678C166151441 @default.
- W2791372678 hasConceptScore W2791372678C171146098 @default.
- W2791372678 hasConceptScore W2791372678C17744445 @default.
- W2791372678 hasConceptScore W2791372678C178802073 @default.
- W2791372678 hasConceptScore W2791372678C183469790 @default.
- W2791372678 hasConceptScore W2791372678C199360897 @default.
- W2791372678 hasConceptScore W2791372678C199539241 @default.
- W2791372678 hasConceptScore W2791372678C22212356 @default.
- W2791372678 hasConceptScore W2791372678C3017944768 @default.
- W2791372678 hasConceptScore W2791372678C41008148 @default.
- W2791372678 hasConceptScore W2791372678C52121051 @default.
- W2791372678 hasConceptScore W2791372678C71924100 @default.
- W2791372678 hasConceptScore W2791372678C99454951 @default.
- W2791372678 hasFunder F4320332395 @default.
- W2791372678 hasLocation W27913726781 @default.
- W2791372678 hasLocation W27913726782 @default.
- W2791372678 hasOpenAccess W2791372678 @default.
- W2791372678 hasPrimaryLocation W27913726781 @default.
- W2791372678 hasRelatedWork W1902198843 @default.
- W2791372678 hasRelatedWork W2384515145 @default.
- W2791372678 hasRelatedWork W2594659882 @default.
- W2791372678 hasRelatedWork W2990671239 @default.
- W2791372678 hasRelatedWork W3028647070 @default.
- W2791372678 hasRelatedWork W3040555399 @default.
- W2791372678 hasRelatedWork W3135778886 @default.
- W2791372678 hasRelatedWork W4298008350 @default.
- W2791372678 hasRelatedWork W578863644 @default.
- W2791372678 hasRelatedWork W596973189 @default.
- W2791372678 hasVolume "112" @default.
- W2791372678 isParatext "false" @default.
- W2791372678 isRetracted "false" @default.
- W2791372678 magId "2791372678" @default.
- W2791372678 workType "article" @default.