Matches in SemOpenAlex for { <https://semopenalex.org/work/W2791547487> ?p ?o ?g. }
- W2791547487 abstract "Models, typically given by systems of mathematical equations, are built to help represent, understand, and further characterize physical phenomena. The choice of a model for a particular phenomenon is made based on user judgment, evidence from measurement data, and/or the ease of its use. Generally, many linear and nonlinear models are available to describe a particular structural dynamical system. Bayesian model selection is a probabilistic tool to help select suitable mathematical model(s) among a possible set of models using Bayes’ theorem. To simplify the analysis, linear structural dynamical models are often used, regardless of whether the dynamical system behaves linearly or not. However, linear models are not always adequate to accurately compute structural responses. When the models also involve some nonlinearity, the required computation for Bayesian model selection increases significantly. An important class of nonlinear problems consists of models that are mostly linear except for some spatially localized nonlinearities. For example, in a building with base isolation, the superstructure is designed to behave essentially linearly in an earthquake excitation and only the isolation layer behaves nonlinearly. Similarly, spacecraft may be modeled with linear components that are connected by spatially localized nonlinear joints. To lessen this increased computational burden, a method is proposed in this paper, combining the senior authors’ previously developed efficient dynamic response algorithm for locally nonlinear systems and an intelligent sampling algorithm, to calculate the evidence for, or marginal likelihood of, a model. The efficient dynamic response algorithm helps achieve significant gains in computational efficiency by exactly transforming the potentially high-dimensional state-space equation of the structural dynamical system into a low-order nonlinear Volterra integral equation. This algorithm is embedded into a nested sampling algorithm, which samples parameters more frequently from the high likelihood region (even if the region of higher likelihood is very different from the region where the prior parameter density function is large), resulting in a computationally efficient framework for Bayesian model selection with locally nonlinear systems; a (moderately) alternate derivation of nested sampling is developed. The approach is demonstrated using three numerical examples. The first two examples consider building models mounted on a hysteretic isolation layer that are subjected to an earthquake excitation. Both single and 99-degree-of-freedom superstructure models are investigated. Different candidate linear and nonlinear models representing the hysteretic behavior of the isolation layer are used. The third example consists of a three-dimensional wind-excited 1,623-degree-of-freedom building structure with tuned mass dampers (TMDs) attached to its roof, where different linear and nonlinear candidate damping models are considered in the TMDs. All three examples include cases in which the true model is not among the models evaluated. The application of the proposed synergistic approach, consisting of an intelligent sampling and an efficient dynamic response algorithm, demonstrates gains in Bayesian model selection computational efficiency of up to three orders of magnitude relative to conventional approaches with comparable accuracy, reducing days of computation to minutes or hours." @default.
- W2791547487 created "2018-03-29" @default.
- W2791547487 creator A5002801998 @default.
- W2791547487 creator A5045592714 @default.
- W2791547487 creator A5069165127 @default.
- W2791547487 creator A5011838459 @default.
- W2791547487 date "2018-05-01" @default.
- W2791547487 modified "2023-10-12" @default.
- W2791547487 title "Computationally Efficient Bayesian Model Selection for Locally Nonlinear Structural Dynamic Systems" @default.
- W2791547487 cites W1508147193 @default.
- W2791547487 cites W1513873506 @default.
- W2791547487 cites W1969203123 @default.
- W2791547487 cites W1972023825 @default.
- W2791547487 cites W1977568055 @default.
- W2791547487 cites W1981689155 @default.
- W2791547487 cites W1983067771 @default.
- W2791547487 cites W1990119892 @default.
- W2791547487 cites W1990562007 @default.
- W2791547487 cites W1993729223 @default.
- W2791547487 cites W1997512975 @default.
- W2791547487 cites W2025669880 @default.
- W2791547487 cites W2025782392 @default.
- W2791547487 cites W2032043551 @default.
- W2791547487 cites W2037699430 @default.
- W2791547487 cites W2045325874 @default.
- W2791547487 cites W2055746248 @default.
- W2791547487 cites W2058170760 @default.
- W2791547487 cites W2062179715 @default.
- W2791547487 cites W2062258832 @default.
- W2791547487 cites W2074147661 @default.
- W2791547487 cites W2087752560 @default.
- W2791547487 cites W2097311910 @default.
- W2791547487 cites W2111872968 @default.
- W2791547487 cites W2116689067 @default.
- W2791547487 cites W2130006111 @default.
- W2791547487 cites W2132320458 @default.
- W2791547487 cites W2158746430 @default.
- W2791547487 cites W2161130145 @default.
- W2791547487 cites W2166670624 @default.
- W2791547487 cites W2194820107 @default.
- W2791547487 cites W2292041038 @default.
- W2791547487 cites W2346026520 @default.
- W2791547487 cites W3021895250 @default.
- W2791547487 cites W32980360 @default.
- W2791547487 cites W4211177544 @default.
- W2791547487 cites W60278794 @default.
- W2791547487 doi "https://doi.org/10.1061/(asce)em.1943-7889.0001397" @default.
- W2791547487 hasPublicationYear "2018" @default.
- W2791547487 type Work @default.
- W2791547487 sameAs 2791547487 @default.
- W2791547487 citedByCount "5" @default.
- W2791547487 countsByYear W27915474872019 @default.
- W2791547487 countsByYear W27915474872020 @default.
- W2791547487 countsByYear W27915474872021 @default.
- W2791547487 countsByYear W27915474872023 @default.
- W2791547487 crossrefType "journal-article" @default.
- W2791547487 hasAuthorship W2791547487A5002801998 @default.
- W2791547487 hasAuthorship W2791547487A5011838459 @default.
- W2791547487 hasAuthorship W2791547487A5045592714 @default.
- W2791547487 hasAuthorship W2791547487A5069165127 @default.
- W2791547487 hasConcept C107673813 @default.
- W2791547487 hasConcept C11413529 @default.
- W2791547487 hasConcept C119857082 @default.
- W2791547487 hasConcept C121332964 @default.
- W2791547487 hasConcept C126255220 @default.
- W2791547487 hasConcept C127413603 @default.
- W2791547487 hasConcept C154945302 @default.
- W2791547487 hasConcept C158622935 @default.
- W2791547487 hasConcept C160234255 @default.
- W2791547487 hasConcept C163175372 @default.
- W2791547487 hasConcept C33923547 @default.
- W2791547487 hasConcept C41008148 @default.
- W2791547487 hasConcept C45374587 @default.
- W2791547487 hasConcept C49937458 @default.
- W2791547487 hasConcept C62520636 @default.
- W2791547487 hasConcept C66938386 @default.
- W2791547487 hasConcept C71983512 @default.
- W2791547487 hasConcept C79379906 @default.
- W2791547487 hasConcept C88282795 @default.
- W2791547487 hasConcept C93959086 @default.
- W2791547487 hasConceptScore W2791547487C107673813 @default.
- W2791547487 hasConceptScore W2791547487C11413529 @default.
- W2791547487 hasConceptScore W2791547487C119857082 @default.
- W2791547487 hasConceptScore W2791547487C121332964 @default.
- W2791547487 hasConceptScore W2791547487C126255220 @default.
- W2791547487 hasConceptScore W2791547487C127413603 @default.
- W2791547487 hasConceptScore W2791547487C154945302 @default.
- W2791547487 hasConceptScore W2791547487C158622935 @default.
- W2791547487 hasConceptScore W2791547487C160234255 @default.
- W2791547487 hasConceptScore W2791547487C163175372 @default.
- W2791547487 hasConceptScore W2791547487C33923547 @default.
- W2791547487 hasConceptScore W2791547487C41008148 @default.
- W2791547487 hasConceptScore W2791547487C45374587 @default.
- W2791547487 hasConceptScore W2791547487C49937458 @default.
- W2791547487 hasConceptScore W2791547487C62520636 @default.
- W2791547487 hasConceptScore W2791547487C66938386 @default.
- W2791547487 hasConceptScore W2791547487C71983512 @default.
- W2791547487 hasConceptScore W2791547487C79379906 @default.
- W2791547487 hasConceptScore W2791547487C88282795 @default.
- W2791547487 hasConceptScore W2791547487C93959086 @default.