Matches in SemOpenAlex for { <https://semopenalex.org/work/W2791612693> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2791612693 endingPage "186" @default.
- W2791612693 startingPage "171" @default.
- W2791612693 abstract "Mining high utility patterns is an important data mining problem that is formulated as finding patterns whose utilities are no less than a threshold. As the mining results are very sensitive to such a threshold, it is difficult for users to specify an appropriate one. An alternative formulation of the problem is to find the top-n high utility patterns. However, the second formulation is more challenging because the corresponding threshold is unknown in advance and the solution search space becomes even larger. When there are very long patterns prior algorithms simply cannot work to mine top-n high utility patterns even for very small n. This paper proposes a novel algorithm for mining top-n high utility patterns that are long. The proposed algorithm adopts an opportunistic pattern growth approach and proposes five opportunistic strategies for scalably maintaining shortlisted patterns, for efficiently computing utilities, and for estimating tight upper bounds to prune search space. Extensive experiments show that the proposed algorithm is 1 to 3 orders of magnitude more efficient than the state-of-the-art top-n high utility pattern mining algorithms, and it is even up to 2 orders of magnitude faster than high utility pattern mining algorithms that are tuned with an optimal threshold." @default.
- W2791612693 created "2018-03-29" @default.
- W2791612693 creator A5012177739 @default.
- W2791612693 creator A5012700373 @default.
- W2791612693 creator A5017102094 @default.
- W2791612693 creator A5021788449 @default.
- W2791612693 creator A5068447696 @default.
- W2791612693 date "2018-05-01" @default.
- W2791612693 modified "2023-10-14" @default.
- W2791612693 title "Opportunistic mining of top-n high utility patterns" @default.
- W2791612693 cites W1550084988 @default.
- W2791612693 cites W1966426226 @default.
- W2791612693 cites W1968259950 @default.
- W2791612693 cites W1971823372 @default.
- W2791612693 cites W1979180881 @default.
- W2791612693 cites W2032226242 @default.
- W2791612693 cites W2049785083 @default.
- W2791612693 cites W2076404872 @default.
- W2791612693 cites W2079978553 @default.
- W2791612693 cites W2086415933 @default.
- W2791612693 cites W2137012502 @default.
- W2791612693 cites W2151028259 @default.
- W2791612693 cites W2183819092 @default.
- W2791612693 cites W2297609079 @default.
- W2791612693 cites W2328335709 @default.
- W2791612693 cites W2513061279 @default.
- W2791612693 doi "https://doi.org/10.1016/j.ins.2018.02.035" @default.
- W2791612693 hasPublicationYear "2018" @default.
- W2791612693 type Work @default.
- W2791612693 sameAs 2791612693 @default.
- W2791612693 citedByCount "10" @default.
- W2791612693 countsByYear W27916126932019 @default.
- W2791612693 countsByYear W27916126932020 @default.
- W2791612693 countsByYear W27916126932021 @default.
- W2791612693 countsByYear W27916126932022 @default.
- W2791612693 countsByYear W27916126932023 @default.
- W2791612693 crossrefType "journal-article" @default.
- W2791612693 hasAuthorship W2791612693A5012177739 @default.
- W2791612693 hasAuthorship W2791612693A5012700373 @default.
- W2791612693 hasAuthorship W2791612693A5017102094 @default.
- W2791612693 hasAuthorship W2791612693A5021788449 @default.
- W2791612693 hasAuthorship W2791612693A5068447696 @default.
- W2791612693 hasBestOaLocation W27916126932 @default.
- W2791612693 hasConcept C111919701 @default.
- W2791612693 hasConcept C11413529 @default.
- W2791612693 hasConcept C124101348 @default.
- W2791612693 hasConcept C126255220 @default.
- W2791612693 hasConcept C2778572836 @default.
- W2791612693 hasConcept C33923547 @default.
- W2791612693 hasConcept C41008148 @default.
- W2791612693 hasConcept C48103436 @default.
- W2791612693 hasConceptScore W2791612693C111919701 @default.
- W2791612693 hasConceptScore W2791612693C11413529 @default.
- W2791612693 hasConceptScore W2791612693C124101348 @default.
- W2791612693 hasConceptScore W2791612693C126255220 @default.
- W2791612693 hasConceptScore W2791612693C2778572836 @default.
- W2791612693 hasConceptScore W2791612693C33923547 @default.
- W2791612693 hasConceptScore W2791612693C41008148 @default.
- W2791612693 hasConceptScore W2791612693C48103436 @default.
- W2791612693 hasFunder F4320321001 @default.
- W2791612693 hasFunder F4320334704 @default.
- W2791612693 hasFunder F4320338464 @default.
- W2791612693 hasLocation W27916126931 @default.
- W2791612693 hasLocation W27916126932 @default.
- W2791612693 hasOpenAccess W2791612693 @default.
- W2791612693 hasPrimaryLocation W27916126931 @default.
- W2791612693 hasRelatedWork W1969663039 @default.
- W2791612693 hasRelatedWork W1997939726 @default.
- W2791612693 hasRelatedWork W2075522052 @default.
- W2791612693 hasRelatedWork W2347219288 @default.
- W2791612693 hasRelatedWork W2366221835 @default.
- W2791612693 hasRelatedWork W2384217159 @default.
- W2791612693 hasRelatedWork W2386767533 @default.
- W2791612693 hasRelatedWork W2748952813 @default.
- W2791612693 hasRelatedWork W2899084033 @default.
- W2791612693 hasRelatedWork W2911878708 @default.
- W2791612693 hasVolume "441" @default.
- W2791612693 isParatext "false" @default.
- W2791612693 isRetracted "false" @default.
- W2791612693 magId "2791612693" @default.
- W2791612693 workType "article" @default.