Matches in SemOpenAlex for { <https://semopenalex.org/work/W2791720650> ?p ?o ?g. }
- W2791720650 endingPage "617" @default.
- W2791720650 startingPage "612" @default.
- W2791720650 abstract "A combined matrix that exploits genealogy together with marker-based information could improve the selection of elite individuals in breeding programs. We present genetic parameters for adaptive and growth traits in beef cattle by exploring linear combinations of pedigree-based (A) and marker-based (G) relationship matrices. We use a data set with 2,111 Brahman (BB) and 2,550 Tropical Composite (TC) cattle with genotypes for 729,068 SNP, and phenotypes for five traits. A weighted relationship matrix (WRM) combining G and A was constructed as WRM = λG + (1 − λ)A. The weight (λ) was explored at values from 0.0 to 1.0, at 0.1 intervals. Additionally, four alternative G matrices, in the WRM, were evaluated according to the selection of SNP used to generate them: 1) Gw: all autosomal SNP with minor allele frequency (MAF) > 1%; 2) Gg: autosomal SNP with MAF > 1% and mapped inside to gene coding regions; 3) Gp: autosomal SNP with MAF > 1% and previously reported to have significant pleiotropic effect in these two populations; and 4) Gc: autosomal SNP with MAF > 1% and with significant correlated effects previously reported in both BB and TC populations. In addition, two A matrices were evaluated: 1) A: all relationships between animals were considered after tracing back known ancestors; and 2) Ad: a distorted A matrix where a random 1% of the off-diagonal nonzero values were set to zero to simulate relationship errors. Five independent Ad matrices were explored each with a different random 1% of relationships masked. Criteria for comparing the resulting WRM included estimates of heritability (h2) and cross-validation accuracy (ACC) of genomic estimated breeding values. The choice of WRM had a greater impact on h2 than on ACC estimates. The 1% errors introduced in pedigree relationships generated large distortion in genetic parameters and ACC estimates. However, employing a λ > 0.7 was an efficient mechanism to compensate for the errors in A. Additionally, although significant (P-value < 0.0001), we found no consistent relationship between the type of SNP used to compute G and h2 or ACC estimates. We devised the optimal value of λ for maximum h2 and ACC at λ = 0.7 suggesting a 70% and 30% weighting to genomic and genealogical information, respectively, as an optimal strategy to compensate for pedigree errors, to improve genetic parameters estimates and lead to more accurate selection decisions." @default.
- W2791720650 created "2018-03-29" @default.
- W2791720650 creator A5008617848 @default.
- W2791720650 creator A5048792086 @default.
- W2791720650 creator A5063403499 @default.
- W2791720650 creator A5071432261 @default.
- W2791720650 creator A5074319488 @default.
- W2791720650 date "2018-01-27" @default.
- W2791720650 modified "2023-10-14" @default.
- W2791720650 title "Weighting genomic and genealogical information for genetic parameter estimation and breeding value prediction in tropical beef cattle" @default.
- W2791720650 cites W2026710805 @default.
- W2791720650 cites W2031781568 @default.
- W2791720650 cites W2034226738 @default.
- W2791720650 cites W2041000916 @default.
- W2791720650 cites W2067715889 @default.
- W2791720650 cites W2083497058 @default.
- W2791720650 cites W2121424562 @default.
- W2791720650 cites W2147163359 @default.
- W2791720650 cites W2153794218 @default.
- W2791720650 cites W2157211770 @default.
- W2791720650 cites W2160608514 @default.
- W2791720650 cites W2573520757 @default.
- W2791720650 cites W2583919829 @default.
- W2791720650 cites W2753094459 @default.
- W2791720650 doi "https://doi.org/10.1093/jas/skx027" @default.
- W2791720650 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6140871" @default.
- W2791720650 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29385460" @default.
- W2791720650 hasPublicationYear "2018" @default.
- W2791720650 type Work @default.
- W2791720650 sameAs 2791720650 @default.
- W2791720650 citedByCount "4" @default.
- W2791720650 countsByYear W27917206502018 @default.
- W2791720650 countsByYear W27917206502019 @default.
- W2791720650 countsByYear W27917206502020 @default.
- W2791720650 countsByYear W27917206502021 @default.
- W2791720650 crossrefType "journal-article" @default.
- W2791720650 hasAuthorship W2791720650A5008617848 @default.
- W2791720650 hasAuthorship W2791720650A5048792086 @default.
- W2791720650 hasAuthorship W2791720650A5063403499 @default.
- W2791720650 hasAuthorship W2791720650A5071432261 @default.
- W2791720650 hasAuthorship W2791720650A5074319488 @default.
- W2791720650 hasBestOaLocation W27917206502 @default.
- W2791720650 hasConcept C103545067 @default.
- W2791720650 hasConcept C104317684 @default.
- W2791720650 hasConcept C105795698 @default.
- W2791720650 hasConcept C126838900 @default.
- W2791720650 hasConcept C135763542 @default.
- W2791720650 hasConcept C139275648 @default.
- W2791720650 hasConcept C153209595 @default.
- W2791720650 hasConcept C154945302 @default.
- W2791720650 hasConcept C157410074 @default.
- W2791720650 hasConcept C183115368 @default.
- W2791720650 hasConcept C2776482104 @default.
- W2791720650 hasConcept C2776521926 @default.
- W2791720650 hasConcept C2778733383 @default.
- W2791720650 hasConcept C2780505807 @default.
- W2791720650 hasConcept C33923547 @default.
- W2791720650 hasConcept C41008148 @default.
- W2791720650 hasConcept C54355233 @default.
- W2791720650 hasConcept C71924100 @default.
- W2791720650 hasConcept C81917197 @default.
- W2791720650 hasConcept C86803240 @default.
- W2791720650 hasConceptScore W2791720650C103545067 @default.
- W2791720650 hasConceptScore W2791720650C104317684 @default.
- W2791720650 hasConceptScore W2791720650C105795698 @default.
- W2791720650 hasConceptScore W2791720650C126838900 @default.
- W2791720650 hasConceptScore W2791720650C135763542 @default.
- W2791720650 hasConceptScore W2791720650C139275648 @default.
- W2791720650 hasConceptScore W2791720650C153209595 @default.
- W2791720650 hasConceptScore W2791720650C154945302 @default.
- W2791720650 hasConceptScore W2791720650C157410074 @default.
- W2791720650 hasConceptScore W2791720650C183115368 @default.
- W2791720650 hasConceptScore W2791720650C2776482104 @default.
- W2791720650 hasConceptScore W2791720650C2776521926 @default.
- W2791720650 hasConceptScore W2791720650C2778733383 @default.
- W2791720650 hasConceptScore W2791720650C2780505807 @default.
- W2791720650 hasConceptScore W2791720650C33923547 @default.
- W2791720650 hasConceptScore W2791720650C41008148 @default.
- W2791720650 hasConceptScore W2791720650C54355233 @default.
- W2791720650 hasConceptScore W2791720650C71924100 @default.
- W2791720650 hasConceptScore W2791720650C81917197 @default.
- W2791720650 hasConceptScore W2791720650C86803240 @default.
- W2791720650 hasIssue "2" @default.
- W2791720650 hasLocation W27917206501 @default.
- W2791720650 hasLocation W27917206502 @default.
- W2791720650 hasLocation W27917206503 @default.
- W2791720650 hasLocation W27917206504 @default.
- W2791720650 hasOpenAccess W2791720650 @default.
- W2791720650 hasPrimaryLocation W27917206501 @default.
- W2791720650 hasRelatedWork W2040727546 @default.
- W2791720650 hasRelatedWork W2097313996 @default.
- W2791720650 hasRelatedWork W2106869457 @default.
- W2791720650 hasRelatedWork W2145474755 @default.
- W2791720650 hasRelatedWork W2161808406 @default.
- W2791720650 hasRelatedWork W2386739545 @default.
- W2791720650 hasRelatedWork W2507364417 @default.
- W2791720650 hasRelatedWork W2791720650 @default.
- W2791720650 hasRelatedWork W2792529897 @default.