Matches in SemOpenAlex for { <https://semopenalex.org/work/W2791764186> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2791764186 abstract "Electroencephalogram(EEG) is the signal fulling of randomness and non-stationarity. It's very susceptible by a variety of noise, especially electrooculogram (EOG). In order to reduce experimental errors, it is necessary to perform artifact recognition and de-noising on the acquired original signal. On the basis of the traditional methods, this paper presents a method of artifact detection and remove based on convolution neural network(CNN) and Hilbert-Huang transform(HHT). Firstly, the instantaneous power of the EEG signal was calculated. The CNN model was used to extract features. The softmax classifier was used to classify EEG. Then, empirical modal decomposition is employed to the EEG with artifacts. The noise in the high frequency component is filtered by referring to Hilbert transform spectrum. Finally, the residual signal is separated by FastICA method to remove the EOG. The experimental results show that the accuracy of CNN method is over 80%. The EEG signal is more pure after HHT de-noising. This work lays a good foundation for the follow-up study." @default.
- W2791764186 created "2018-03-29" @default.
- W2791764186 creator A5032065022 @default.
- W2791764186 creator A5035520440 @default.
- W2791764186 creator A5038736166 @default.
- W2791764186 creator A5054980646 @default.
- W2791764186 creator A5073706747 @default.
- W2791764186 date "2017-10-01" @default.
- W2791764186 modified "2023-09-24" @default.
- W2791764186 title "EEG detection and de-noising based on convolution neural network and Hilbert-Huang transform" @default.
- W2791764186 cites W1968831876 @default.
- W2791764186 cites W1973863099 @default.
- W2791764186 cites W1975118665 @default.
- W2791764186 cites W2007221293 @default.
- W2791764186 cites W2032197450 @default.
- W2791764186 cites W2036192142 @default.
- W2791764186 cites W2170077112 @default.
- W2791764186 cites W2232827647 @default.
- W2791764186 cites W2243147875 @default.
- W2791764186 cites W2364386214 @default.
- W2791764186 cites W2570697713 @default.
- W2791764186 cites W2738456752 @default.
- W2791764186 doi "https://doi.org/10.1109/cisp-bmei.2017.8302146" @default.
- W2791764186 hasPublicationYear "2017" @default.
- W2791764186 type Work @default.
- W2791764186 sameAs 2791764186 @default.
- W2791764186 citedByCount "8" @default.
- W2791764186 countsByYear W27917641862018 @default.
- W2791764186 countsByYear W27917641862019 @default.
- W2791764186 countsByYear W27917641862020 @default.
- W2791764186 countsByYear W27917641862021 @default.
- W2791764186 countsByYear W27917641862022 @default.
- W2791764186 countsByYear W27917641862023 @default.
- W2791764186 crossrefType "proceedings-article" @default.
- W2791764186 hasAuthorship W2791764186A5032065022 @default.
- W2791764186 hasAuthorship W2791764186A5035520440 @default.
- W2791764186 hasAuthorship W2791764186A5038736166 @default.
- W2791764186 hasAuthorship W2791764186A5054980646 @default.
- W2791764186 hasAuthorship W2791764186A5073706747 @default.
- W2791764186 hasConcept C106131492 @default.
- W2791764186 hasConcept C118552586 @default.
- W2791764186 hasConcept C153180895 @default.
- W2791764186 hasConcept C154945302 @default.
- W2791764186 hasConcept C15744967 @default.
- W2791764186 hasConcept C28490314 @default.
- W2791764186 hasConcept C28799612 @default.
- W2791764186 hasConcept C31972630 @default.
- W2791764186 hasConcept C41008148 @default.
- W2791764186 hasConcept C45347329 @default.
- W2791764186 hasConcept C50644808 @default.
- W2791764186 hasConcept C522805319 @default.
- W2791764186 hasConcept C81363708 @default.
- W2791764186 hasConceptScore W2791764186C106131492 @default.
- W2791764186 hasConceptScore W2791764186C118552586 @default.
- W2791764186 hasConceptScore W2791764186C153180895 @default.
- W2791764186 hasConceptScore W2791764186C154945302 @default.
- W2791764186 hasConceptScore W2791764186C15744967 @default.
- W2791764186 hasConceptScore W2791764186C28490314 @default.
- W2791764186 hasConceptScore W2791764186C28799612 @default.
- W2791764186 hasConceptScore W2791764186C31972630 @default.
- W2791764186 hasConceptScore W2791764186C41008148 @default.
- W2791764186 hasConceptScore W2791764186C45347329 @default.
- W2791764186 hasConceptScore W2791764186C50644808 @default.
- W2791764186 hasConceptScore W2791764186C522805319 @default.
- W2791764186 hasConceptScore W2791764186C81363708 @default.
- W2791764186 hasLocation W27917641861 @default.
- W2791764186 hasOpenAccess W2791764186 @default.
- W2791764186 hasPrimaryLocation W27917641861 @default.
- W2791764186 hasRelatedWork W2175746458 @default.
- W2791764186 hasRelatedWork W2613736958 @default.
- W2791764186 hasRelatedWork W2732542196 @default.
- W2791764186 hasRelatedWork W2738221750 @default.
- W2791764186 hasRelatedWork W2760085659 @default.
- W2791764186 hasRelatedWork W2912288872 @default.
- W2791764186 hasRelatedWork W3012978760 @default.
- W2791764186 hasRelatedWork W3081496756 @default.
- W2791764186 hasRelatedWork W3093612317 @default.
- W2791764186 hasRelatedWork W4312417841 @default.
- W2791764186 isParatext "false" @default.
- W2791764186 isRetracted "false" @default.
- W2791764186 magId "2791764186" @default.
- W2791764186 workType "article" @default.