Matches in SemOpenAlex for { <https://semopenalex.org/work/W2791957585> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2791957585 endingPage "421" @default.
- W2791957585 startingPage "401" @default.
- W2791957585 abstract "The widespread application of sophisticated structural health monitoring systems in civil infrastructures produces a large volume of data. As a result, the analysis and mining of structural health monitoring data have become hot research topics in the field of civil engineering. However, the harsh environment of civil structures causes the data measured by structural health monitoring systems to be contaminated by multiple anomalies, which seriously affect the data analysis results. This is one of the main barriers to automatic real-time warning, because it is difficult to distinguish the anomalies caused by structural damage from those related to incorrect data. Existing methods for data cleansing mainly focus on noise filtering, whereas the detection of incorrect data requires expertise and is very time-consuming. Inspired by the real-world manual inspection process, this article proposes a computer vision and deep learning–based data anomaly detection method. In particular, the framework of the proposed method includes two steps: data conversion by data visualization, and the construction and training of deep neural networks for anomaly classification. This process imitates human biological vision and logical thinking. In the data visualization step, the time series signals are transformed into image vectors that are plotted piecewise in grayscale images. In the second step, a training dataset consisting of randomly selected and manually labeled image vectors is input into a deep neural network or a cluster of deep neural networks, which are trained via techniques termed stacked autoencoders and greedy layer-wise training. The trained deep neural networks can be used to detect potential anomalies in large amounts of unchecked structural health monitoring data. To illustrate the training procedure and validate the performance of the proposed method, acceleration data from the structural health monitoring system of a real long-span bridge in China are employed. The results show that the multi-pattern anomalies of the data can be automatically detected with high accuracy." @default.
- W2791957585 created "2018-03-29" @default.
- W2791957585 creator A5036026043 @default.
- W2791957585 creator A5049761132 @default.
- W2791957585 creator A5070569173 @default.
- W2791957585 creator A5089559746 @default.
- W2791957585 date "2018-02-19" @default.
- W2791957585 modified "2023-10-11" @default.
- W2791957585 title "Computer vision and deep learning–based data anomaly detection method for structural health monitoring" @default.
- W2791957585 cites W1481703298 @default.
- W2791957585 cites W1560047381 @default.
- W2791957585 cites W1600819642 @default.
- W2791957585 cites W1997161945 @default.
- W2791957585 cites W1999395181 @default.
- W2791957585 cites W2017281898 @default.
- W2791957585 cites W2020091852 @default.
- W2791957585 cites W2033431418 @default.
- W2791957585 cites W2035268271 @default.
- W2791957585 cites W2036241893 @default.
- W2791957585 cites W2051812123 @default.
- W2791957585 cites W2051886259 @default.
- W2791957585 cites W2063922127 @default.
- W2791957585 cites W2082741200 @default.
- W2791957585 cites W2084229232 @default.
- W2791957585 cites W2089938544 @default.
- W2791957585 cites W2128880484 @default.
- W2791957585 cites W2132112746 @default.
- W2791957585 cites W2136922672 @default.
- W2791957585 cites W2149486674 @default.
- W2791957585 cites W2153695977 @default.
- W2791957585 cites W2195459533 @default.
- W2791957585 cites W2482058647 @default.
- W2791957585 cites W2511538593 @default.
- W2791957585 cites W2512804334 @default.
- W2791957585 cites W2590596886 @default.
- W2791957585 cites W2590665418 @default.
- W2791957585 cites W2598457882 @default.
- W2791957585 cites W2919115771 @default.
- W2791957585 cites W425539784 @default.
- W2791957585 doi "https://doi.org/10.1177/1475921718757405" @default.
- W2791957585 hasPublicationYear "2018" @default.
- W2791957585 type Work @default.
- W2791957585 sameAs 2791957585 @default.
- W2791957585 citedByCount "279" @default.
- W2791957585 countsByYear W27919575852018 @default.
- W2791957585 countsByYear W27919575852019 @default.
- W2791957585 countsByYear W27919575852020 @default.
- W2791957585 countsByYear W27919575852021 @default.
- W2791957585 countsByYear W27919575852022 @default.
- W2791957585 countsByYear W27919575852023 @default.
- W2791957585 crossrefType "journal-article" @default.
- W2791957585 hasAuthorship W2791957585A5036026043 @default.
- W2791957585 hasAuthorship W2791957585A5049761132 @default.
- W2791957585 hasAuthorship W2791957585A5070569173 @default.
- W2791957585 hasAuthorship W2791957585A5089559746 @default.
- W2791957585 hasConcept C108583219 @default.
- W2791957585 hasConcept C111919701 @default.
- W2791957585 hasConcept C119857082 @default.
- W2791957585 hasConcept C124101348 @default.
- W2791957585 hasConcept C153180895 @default.
- W2791957585 hasConcept C154945302 @default.
- W2791957585 hasConcept C36464697 @default.
- W2791957585 hasConcept C41008148 @default.
- W2791957585 hasConcept C50644808 @default.
- W2791957585 hasConcept C739882 @default.
- W2791957585 hasConcept C98045186 @default.
- W2791957585 hasConceptScore W2791957585C108583219 @default.
- W2791957585 hasConceptScore W2791957585C111919701 @default.
- W2791957585 hasConceptScore W2791957585C119857082 @default.
- W2791957585 hasConceptScore W2791957585C124101348 @default.
- W2791957585 hasConceptScore W2791957585C153180895 @default.
- W2791957585 hasConceptScore W2791957585C154945302 @default.
- W2791957585 hasConceptScore W2791957585C36464697 @default.
- W2791957585 hasConceptScore W2791957585C41008148 @default.
- W2791957585 hasConceptScore W2791957585C50644808 @default.
- W2791957585 hasConceptScore W2791957585C739882 @default.
- W2791957585 hasConceptScore W2791957585C98045186 @default.
- W2791957585 hasFunder F4320321001 @default.
- W2791957585 hasIssue "2" @default.
- W2791957585 hasLocation W27919575851 @default.
- W2791957585 hasOpenAccess W2791957585 @default.
- W2791957585 hasPrimaryLocation W27919575851 @default.
- W2791957585 hasRelatedWork W2068608913 @default.
- W2791957585 hasRelatedWork W2071701083 @default.
- W2791957585 hasRelatedWork W2077542787 @default.
- W2791957585 hasRelatedWork W2141033859 @default.
- W2791957585 hasRelatedWork W2156434174 @default.
- W2791957585 hasRelatedWork W2383687187 @default.
- W2791957585 hasRelatedWork W3124914020 @default.
- W2791957585 hasRelatedWork W4375867731 @default.
- W2791957585 hasRelatedWork W4380075502 @default.
- W2791957585 hasRelatedWork W2121496884 @default.
- W2791957585 hasVolume "18" @default.
- W2791957585 isParatext "false" @default.
- W2791957585 isRetracted "false" @default.
- W2791957585 magId "2791957585" @default.
- W2791957585 workType "article" @default.