Matches in SemOpenAlex for { <https://semopenalex.org/work/W2791994412> ?p ?o ?g. }
- W2791994412 endingPage "809" @default.
- W2791994412 startingPage "800" @default.
- W2791994412 abstract "The deposition of thin solid films is central to many industrial applications, and chemical vapor deposition (CVD) methods are particularly useful for this task. For one, the isotropic nature of the adsorption of chemical species affords even coverages on surfaces with rough topographies, an increasingly common requirement in microelectronics. Furthermore, by splitting the overall film-depositing reactions into two or more complementary and self-limiting steps, as it is done in atomic layer depositions (ALD), film thicknesses can be controlled down to the sub-monolayer level. Thanks to the availability of a vast array of inorganic and metalorganic precursors, CVD and ALD are quite versatile and can be engineered to deposit virtually any type of solid material. On the negative side, the surface chemistry that takes place in these processes is often complex, and can include undesirable side reactions leading to the incorporation of impurities in the growing films. Appropriate precursors and deposition conditions need to be chosen to minimize these problems, and that requires a proper understanding of the underlying surface chemistry. The precursors for CVD and ALD are often designed and chosen based on their known thermal chemistry from inorganic chemistry studies, taking advantage of the vast knowledge developed in that field over the years. Although a good first approximation, however, this approach can lead to wrong choices, because the reactions of these precursors at gas-solid interfaces can be quite different from what is seen in solution. For one, solvents often aid in the displacement of ligands in metalorganic compounds, providing the right dielectric environment, temporarily coordinating to the metal, or facilitating multiple ligand-complex interactions to increase reaction probabilities; these options are not available in the gas-solid reactions associated with CVD and ALD. Moreover, solid surfaces act as unique ligands, if these reactions are to be viewed from the point of view of the metalorganic complexes used as precursors: they are bulky and rigid, can provide multiple binding sites for a single reaction, and can promote unique bonding modes, especially on metals, which have delocalized electronic structures. The differences between the molecular and surface chemistry of CVD and ALD precursors can result in significant variations in their reactivity, ultimately leading to unpredictable properties in the newly grown films. In this Account, we discuss some of the main similarities and differences in chemistry that CVD/ALD precursors follow on surfaces when contrasted against their known behavior in solution, with emphasis on our own work but also referencing other key contributions. Our approach is unique in that it combines expertise from the inorganic, surface science, and quantum-mechanics fields to better understand the mechanistic details of the chemistry of CVD and ALD processes and to identify new criteria to consider when designing CVD/ALD precursors." @default.
- W2791994412 created "2018-03-29" @default.
- W2791994412 creator A5020625982 @default.
- W2791994412 creator A5074539493 @default.
- W2791994412 creator A5086728720 @default.
- W2791994412 date "2018-02-28" @default.
- W2791994412 modified "2023-10-03" @default.
- W2791994412 title "The Chemistry of Inorganic Precursors during the Chemical Deposition of Films on Solid Surfaces" @default.
- W2791994412 cites W1965445812 @default.
- W2791994412 cites W1967749052 @default.
- W2791994412 cites W1974359614 @default.
- W2791994412 cites W1974900665 @default.
- W2791994412 cites W1978887676 @default.
- W2791994412 cites W1981675606 @default.
- W2791994412 cites W1985562733 @default.
- W2791994412 cites W1989229321 @default.
- W2791994412 cites W1990009596 @default.
- W2791994412 cites W1993420867 @default.
- W2791994412 cites W1994978717 @default.
- W2791994412 cites W1995191254 @default.
- W2791994412 cites W1995836054 @default.
- W2791994412 cites W1999733452 @default.
- W2791994412 cites W2011517805 @default.
- W2791994412 cites W2017278507 @default.
- W2791994412 cites W2017639183 @default.
- W2791994412 cites W2019601467 @default.
- W2791994412 cites W2019934385 @default.
- W2791994412 cites W2022901144 @default.
- W2791994412 cites W2025172217 @default.
- W2791994412 cites W2025520439 @default.
- W2791994412 cites W2030893024 @default.
- W2791994412 cites W2032681615 @default.
- W2791994412 cites W2035733716 @default.
- W2791994412 cites W2063058287 @default.
- W2791994412 cites W2065737365 @default.
- W2791994412 cites W2073223935 @default.
- W2791994412 cites W2081714664 @default.
- W2791994412 cites W2082539343 @default.
- W2791994412 cites W2086679899 @default.
- W2791994412 cites W2094156520 @default.
- W2791994412 cites W2096331166 @default.
- W2791994412 cites W2110732177 @default.
- W2791994412 cites W2117990380 @default.
- W2791994412 cites W2122270852 @default.
- W2791994412 cites W2124126967 @default.
- W2791994412 cites W2124818453 @default.
- W2791994412 cites W2137032131 @default.
- W2791994412 cites W2158932701 @default.
- W2791994412 cites W2165910548 @default.
- W2791994412 cites W2275894351 @default.
- W2791994412 cites W2285145014 @default.
- W2791994412 cites W2319804151 @default.
- W2791994412 cites W2320375341 @default.
- W2791994412 cites W2321961957 @default.
- W2791994412 cites W2322210502 @default.
- W2791994412 cites W2326996536 @default.
- W2791994412 cites W2329443075 @default.
- W2791994412 cites W2330467903 @default.
- W2791994412 cites W2333183362 @default.
- W2791994412 cites W2346438694 @default.
- W2791994412 cites W2460540381 @default.
- W2791994412 cites W2473786924 @default.
- W2791994412 cites W2487753240 @default.
- W2791994412 cites W2507886515 @default.
- W2791994412 cites W2549028637 @default.
- W2791994412 cites W2560717945 @default.
- W2791994412 cites W2564211426 @default.
- W2791994412 cites W2597213210 @default.
- W2791994412 cites W2949962129 @default.
- W2791994412 doi "https://doi.org/10.1021/acs.accounts.8b00012" @default.
- W2791994412 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29489341" @default.
- W2791994412 hasPublicationYear "2018" @default.
- W2791994412 type Work @default.
- W2791994412 sameAs 2791994412 @default.
- W2791994412 citedByCount "40" @default.
- W2791994412 countsByYear W27919944122018 @default.
- W2791994412 countsByYear W27919944122019 @default.
- W2791994412 countsByYear W27919944122020 @default.
- W2791994412 countsByYear W27919944122021 @default.
- W2791994412 countsByYear W27919944122022 @default.
- W2791994412 countsByYear W27919944122023 @default.
- W2791994412 crossrefType "journal-article" @default.
- W2791994412 hasAuthorship W2791994412A5020625982 @default.
- W2791994412 hasAuthorship W2791994412A5074539493 @default.
- W2791994412 hasAuthorship W2791994412A5086728720 @default.
- W2791994412 hasConcept C127413603 @default.
- W2791994412 hasConcept C150394285 @default.
- W2791994412 hasConcept C151730666 @default.
- W2791994412 hasConcept C171250308 @default.
- W2791994412 hasConcept C178790620 @default.
- W2791994412 hasConcept C185592680 @default.
- W2791994412 hasConcept C187937830 @default.
- W2791994412 hasConcept C188198153 @default.
- W2791994412 hasConcept C19067145 @default.
- W2791994412 hasConcept C192562407 @default.
- W2791994412 hasConcept C2816523 @default.
- W2791994412 hasConcept C42360764 @default.
- W2791994412 hasConcept C57410435 @default.