Matches in SemOpenAlex for { <https://semopenalex.org/work/W2792016738> ?p ?o ?g. }
- W2792016738 endingPage "122" @default.
- W2792016738 startingPage "117" @default.
- W2792016738 abstract "Convolutional Neural Networks (CNNs) have achieved excellent performance on various artificial intelligence (AI) applications, while a higher demand on energy efficiency is required for future AI. Resistive Random-Access Memory (RRAM)-based computing system provides a promising solution to energy-efficient neural network training. However, it's difficult to support high-precision CNN in RRAM-based hardware systems. Firstly, multi-bit digital-analog interfaces will take up most energy overhead of the whole system. Secondly, it's difficult to write the RRAM to expected resistance states accurately; only low-precision numbers can be represented. To enable CNN training based on RRAM, we propose a low-bitwidth CNN training method, using low-bitwidth convolution outputs (CO), activations (A), weights (W) and gradients (G) to train CNN models based on RRAM. Furthermore, we design a system to implement the training algorithms. We explore the accuracy under different bitwidth combinations of (A, CO, W, G), and propose a practical tradeoff between accuracy and energy overhead. Our experiments demonstrate that the proposed system perform well on low-bitwidth CNN training tasks. For example, training LeNet-5 with 4-bit convolution outputs, 4-bit weights, 4-bit activations and 4-bit gradients on MNIST can still achieve 97.67% accuracy. Moreover, the proposed system can achieve 23.0X higher energy efficiency than GPU when processing the training task of LeNet-5, and 4.4X higher energy efficiency when processing the training task of ResNet-20." @default.
- W2792016738 created "2018-03-29" @default.
- W2792016738 creator A5008190519 @default.
- W2792016738 creator A5023755254 @default.
- W2792016738 creator A5036135781 @default.
- W2792016738 creator A5038948893 @default.
- W2792016738 creator A5049753817 @default.
- W2792016738 creator A5068626165 @default.
- W2792016738 creator A5069788729 @default.
- W2792016738 date "2018-01-22" @default.
- W2792016738 modified "2023-09-28" @default.
- W2792016738 title "Training low bitwidth convolutional neural network on RRAM" @default.
- W2792016738 cites W1667072054 @default.
- W2792016738 cites W1686810756 @default.
- W2792016738 cites W1905882502 @default.
- W2792016738 cites W1993163906 @default.
- W2792016738 cites W2010202670 @default.
- W2792016738 cites W2044814508 @default.
- W2792016738 cites W2111406701 @default.
- W2792016738 cites W2145249131 @default.
- W2792016738 cites W2160815625 @default.
- W2792016738 cites W2194775991 @default.
- W2792016738 cites W2288519604 @default.
- W2792016738 cites W2300242332 @default.
- W2792016738 cites W2319920447 @default.
- W2792016738 cites W2329040051 @default.
- W2792016738 cites W2469490737 @default.
- W2792016738 cites W2508602506 @default.
- W2792016738 cites W2518281301 @default.
- W2792016738 cites W2588666075 @default.
- W2792016738 cites W2627034335 @default.
- W2792016738 cites W3099743262 @default.
- W2792016738 doi "https://doi.org/10.5555/3201607.3201632" @default.
- W2792016738 hasPublicationYear "2018" @default.
- W2792016738 type Work @default.
- W2792016738 sameAs 2792016738 @default.
- W2792016738 citedByCount "6" @default.
- W2792016738 countsByYear W27920167382018 @default.
- W2792016738 countsByYear W27920167382019 @default.
- W2792016738 countsByYear W27920167382020 @default.
- W2792016738 countsByYear W27920167382021 @default.
- W2792016738 crossrefType "proceedings-article" @default.
- W2792016738 hasAuthorship W2792016738A5008190519 @default.
- W2792016738 hasAuthorship W2792016738A5023755254 @default.
- W2792016738 hasAuthorship W2792016738A5036135781 @default.
- W2792016738 hasAuthorship W2792016738A5038948893 @default.
- W2792016738 hasAuthorship W2792016738A5049753817 @default.
- W2792016738 hasAuthorship W2792016738A5068626165 @default.
- W2792016738 hasAuthorship W2792016738A5069788729 @default.
- W2792016738 hasConcept C105795698 @default.
- W2792016738 hasConcept C111919701 @default.
- W2792016738 hasConcept C113775141 @default.
- W2792016738 hasConcept C119599485 @default.
- W2792016738 hasConcept C121332964 @default.
- W2792016738 hasConcept C123593499 @default.
- W2792016738 hasConcept C127413603 @default.
- W2792016738 hasConcept C154945302 @default.
- W2792016738 hasConcept C162324750 @default.
- W2792016738 hasConcept C164120249 @default.
- W2792016738 hasConcept C165801399 @default.
- W2792016738 hasConcept C182019814 @default.
- W2792016738 hasConcept C186370098 @default.
- W2792016738 hasConcept C187736073 @default.
- W2792016738 hasConcept C190502265 @default.
- W2792016738 hasConcept C194222762 @default.
- W2792016738 hasConcept C23123220 @default.
- W2792016738 hasConcept C2742236 @default.
- W2792016738 hasConcept C2779960059 @default.
- W2792016738 hasConcept C2780451532 @default.
- W2792016738 hasConcept C33923547 @default.
- W2792016738 hasConcept C41008148 @default.
- W2792016738 hasConcept C45347329 @default.
- W2792016738 hasConcept C50644808 @default.
- W2792016738 hasConcept C62520636 @default.
- W2792016738 hasConcept C81363708 @default.
- W2792016738 hasConcept C97854310 @default.
- W2792016738 hasConceptScore W2792016738C105795698 @default.
- W2792016738 hasConceptScore W2792016738C111919701 @default.
- W2792016738 hasConceptScore W2792016738C113775141 @default.
- W2792016738 hasConceptScore W2792016738C119599485 @default.
- W2792016738 hasConceptScore W2792016738C121332964 @default.
- W2792016738 hasConceptScore W2792016738C123593499 @default.
- W2792016738 hasConceptScore W2792016738C127413603 @default.
- W2792016738 hasConceptScore W2792016738C154945302 @default.
- W2792016738 hasConceptScore W2792016738C162324750 @default.
- W2792016738 hasConceptScore W2792016738C164120249 @default.
- W2792016738 hasConceptScore W2792016738C165801399 @default.
- W2792016738 hasConceptScore W2792016738C182019814 @default.
- W2792016738 hasConceptScore W2792016738C186370098 @default.
- W2792016738 hasConceptScore W2792016738C187736073 @default.
- W2792016738 hasConceptScore W2792016738C190502265 @default.
- W2792016738 hasConceptScore W2792016738C194222762 @default.
- W2792016738 hasConceptScore W2792016738C23123220 @default.
- W2792016738 hasConceptScore W2792016738C2742236 @default.
- W2792016738 hasConceptScore W2792016738C2779960059 @default.
- W2792016738 hasConceptScore W2792016738C2780451532 @default.
- W2792016738 hasConceptScore W2792016738C33923547 @default.
- W2792016738 hasConceptScore W2792016738C41008148 @default.