Matches in SemOpenAlex for { <https://semopenalex.org/work/W2792018332> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2792018332 endingPage "150" @default.
- W2792018332 startingPage "142" @default.
- W2792018332 abstract "Abstract In the study of data-driven prognostic methods of machinery, much attention has been paid to constructing health indicators (HIs). Most of the existing HIs, however, are manually constructed for a specific degradation process and need the prior knowledge of experts. Additionally, for the existing HIs, there are usually some outlier regions deviating to an expected degradation trend and reducing the performance of HIs. We refer to this phenomenon as trend burr. To deal with these problems, this paper proposes a convolutional neural network based HI construction method considering trend burr. The proposed method first learns features through convolution and pooling operations, and then these learned features are constructed into a HI through a nonlinear mapping operation. Furthermore, an outlier region correction technique is applied to detect and remove outlier regions existing in the HIs. Unlike traditional methods in which HIs are manually constructed, the proposed method aims to automatically construct HIs. Moreover, the outlier region correction technique enables the constructed HIs to be more effective. The effectiveness of the proposed method is verified using a bearing dataset. Through comparing with commonly used HI construction methods, it is demonstrated that the proposed method achieves better results in terms of trendability, monotonicity and scale similarity." @default.
- W2792018332 created "2018-03-29" @default.
- W2792018332 creator A5004274878 @default.
- W2792018332 creator A5007241832 @default.
- W2792018332 creator A5008554873 @default.
- W2792018332 creator A5044245613 @default.
- W2792018332 creator A5049448297 @default.
- W2792018332 date "2018-05-01" @default.
- W2792018332 modified "2023-10-07" @default.
- W2792018332 title "Machinery health indicator construction based on convolutional neural networks considering trend burr" @default.
- W2792018332 cites W1973665104 @default.
- W2792018332 cites W1978670814 @default.
- W2792018332 cites W2005523062 @default.
- W2792018332 cites W2006169073 @default.
- W2792018332 cites W2026493302 @default.
- W2792018332 cites W2031103657 @default.
- W2792018332 cites W2043281016 @default.
- W2792018332 cites W2100495367 @default.
- W2792018332 cites W2219903032 @default.
- W2792018332 cites W2294172420 @default.
- W2792018332 cites W2317595875 @default.
- W2792018332 cites W2319025975 @default.
- W2792018332 cites W2404692435 @default.
- W2792018332 cites W2460208105 @default.
- W2792018332 cites W2461729787 @default.
- W2792018332 cites W2556345765 @default.
- W2792018332 cites W2565516711 @default.
- W2792018332 cites W2590288147 @default.
- W2792018332 cites W2591055632 @default.
- W2792018332 cites W2591645937 @default.
- W2792018332 cites W2595657631 @default.
- W2792018332 cites W2604669887 @default.
- W2792018332 cites W2735823605 @default.
- W2792018332 cites W2738563279 @default.
- W2792018332 cites W2773549135 @default.
- W2792018332 cites W4205947740 @default.
- W2792018332 doi "https://doi.org/10.1016/j.neucom.2018.02.083" @default.
- W2792018332 hasPublicationYear "2018" @default.
- W2792018332 type Work @default.
- W2792018332 sameAs 2792018332 @default.
- W2792018332 citedByCount "181" @default.
- W2792018332 countsByYear W27920183322018 @default.
- W2792018332 countsByYear W27920183322019 @default.
- W2792018332 countsByYear W27920183322020 @default.
- W2792018332 countsByYear W27920183322021 @default.
- W2792018332 countsByYear W27920183322022 @default.
- W2792018332 countsByYear W27920183322023 @default.
- W2792018332 crossrefType "journal-article" @default.
- W2792018332 hasAuthorship W2792018332A5004274878 @default.
- W2792018332 hasAuthorship W2792018332A5007241832 @default.
- W2792018332 hasAuthorship W2792018332A5008554873 @default.
- W2792018332 hasAuthorship W2792018332A5044245613 @default.
- W2792018332 hasAuthorship W2792018332A5049448297 @default.
- W2792018332 hasConcept C119857082 @default.
- W2792018332 hasConcept C153180895 @default.
- W2792018332 hasConcept C154945302 @default.
- W2792018332 hasConcept C41008148 @default.
- W2792018332 hasConcept C81363708 @default.
- W2792018332 hasConceptScore W2792018332C119857082 @default.
- W2792018332 hasConceptScore W2792018332C153180895 @default.
- W2792018332 hasConceptScore W2792018332C154945302 @default.
- W2792018332 hasConceptScore W2792018332C41008148 @default.
- W2792018332 hasConceptScore W2792018332C81363708 @default.
- W2792018332 hasFunder F4320321001 @default.
- W2792018332 hasLocation W27920183321 @default.
- W2792018332 hasOpenAccess W2792018332 @default.
- W2792018332 hasPrimaryLocation W27920183321 @default.
- W2792018332 hasRelatedWork W2175746458 @default.
- W2792018332 hasRelatedWork W2613736958 @default.
- W2792018332 hasRelatedWork W2732542196 @default.
- W2792018332 hasRelatedWork W2738221750 @default.
- W2792018332 hasRelatedWork W2760085659 @default.
- W2792018332 hasRelatedWork W2883200793 @default.
- W2792018332 hasRelatedWork W3012978760 @default.
- W2792018332 hasRelatedWork W3027997911 @default.
- W2792018332 hasRelatedWork W3093612317 @default.
- W2792018332 hasRelatedWork W4287776258 @default.
- W2792018332 hasVolume "292" @default.
- W2792018332 isParatext "false" @default.
- W2792018332 isRetracted "false" @default.
- W2792018332 magId "2792018332" @default.
- W2792018332 workType "article" @default.