Matches in SemOpenAlex for { <https://semopenalex.org/work/W2792023360> ?p ?o ?g. }
- W2792023360 endingPage "54" @default.
- W2792023360 startingPage "41" @default.
- W2792023360 abstract "Intervertebral discs (IVDs) are small joints that lie between adjacent vertebrae. The localization and segmentation of IVDs are important for spine disease diagnosis and measurement quantification. However, manual annotation is time-consuming and error-prone with limited reproducibility, particularly for volumetric data. In this work, our goal is to develop an automatic and accurate method based on fully convolutional networks (FCN) for the localization and segmentation of IVDs from multi-modality 3D MR data. Compared with single modality data, multi-modality MR images provide complementary contextual information, which contributes to better recognition performance. However, how to effectively integrate such multi-modality information to generate accurate segmentation results remains to be further explored. In this paper, we present a novel multi-scale and modality dropout learning framework to locate and segment IVDs from four-modality MR images. First, we design a 3D multi-scale context fully convolutional network, which processes the input data in multiple scales of context and then merges the high-level features to enhance the representation capability of the network for handling the scale variation of anatomical structures. Second, to harness the complementary information from different modalities, we present a random modality voxel dropout strategy which alleviates the co-adaption issue and increases the discriminative capability of the network. Our method achieved the 1st place in the MICCAI challenge on automatic localization and segmentation of IVDs from multi-modality MR images, with a mean segmentation Dice coefficient of 91.2% and a mean localization error of 0.62 mm. We further conduct extensive experiments on the extended dataset to validate our method. We demonstrate that the proposed modality dropout strategy with multi-modality images as contextual information improved the segmentation accuracy significantly. Furthermore, experiments conducted on extended data collected from two different time points demonstrate the efficacy of our method on tracking the morphological changes in a longitudinal study." @default.
- W2792023360 created "2018-03-29" @default.
- W2792023360 creator A5002788521 @default.
- W2792023360 creator A5032708386 @default.
- W2792023360 creator A5048895819 @default.
- W2792023360 creator A5054382056 @default.
- W2792023360 creator A5062994651 @default.
- W2792023360 creator A5064085064 @default.
- W2792023360 creator A5071132796 @default.
- W2792023360 creator A5088035307 @default.
- W2792023360 creator A5088302108 @default.
- W2792023360 creator A5090516040 @default.
- W2792023360 date "2018-04-01" @default.
- W2792023360 modified "2023-10-14" @default.
- W2792023360 title "3D multi-scale FCN with random modality voxel dropout learning for Intervertebral Disc Localization and Segmentation from Multi-modality MR Images" @default.
- W2792023360 cites W1967274982 @default.
- W2792023360 cites W1989077880 @default.
- W2792023360 cites W1990808391 @default.
- W2792023360 cites W2024440055 @default.
- W2792023360 cites W2027451143 @default.
- W2792023360 cites W2033568227 @default.
- W2792023360 cites W2038085285 @default.
- W2792023360 cites W2038406583 @default.
- W2792023360 cites W2043267612 @default.
- W2792023360 cites W2046296065 @default.
- W2792023360 cites W2055705583 @default.
- W2792023360 cites W2060499860 @default.
- W2792023360 cites W2061715187 @default.
- W2792023360 cites W2075358081 @default.
- W2792023360 cites W2077598782 @default.
- W2792023360 cites W2082526668 @default.
- W2792023360 cites W2092416145 @default.
- W2792023360 cites W2094287665 @default.
- W2792023360 cites W2097583462 @default.
- W2792023360 cites W2101689475 @default.
- W2792023360 cites W2121578625 @default.
- W2792023360 cites W2128431867 @default.
- W2792023360 cites W2165759407 @default.
- W2792023360 cites W2253429366 @default.
- W2792023360 cites W2301358467 @default.
- W2792023360 cites W2321283863 @default.
- W2792023360 cites W2345010043 @default.
- W2792023360 cites W2513411538 @default.
- W2792023360 cites W2550409828 @default.
- W2792023360 cites W2560023338 @default.
- W2792023360 cites W2600979969 @default.
- W2792023360 cites W2613041730 @default.
- W2792023360 doi "https://doi.org/10.1016/j.media.2018.01.004" @default.
- W2792023360 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29414435" @default.
- W2792023360 hasPublicationYear "2018" @default.
- W2792023360 type Work @default.
- W2792023360 sameAs 2792023360 @default.
- W2792023360 citedByCount "113" @default.
- W2792023360 countsByYear W27920233602017 @default.
- W2792023360 countsByYear W27920233602018 @default.
- W2792023360 countsByYear W27920233602019 @default.
- W2792023360 countsByYear W27920233602020 @default.
- W2792023360 countsByYear W27920233602021 @default.
- W2792023360 countsByYear W27920233602022 @default.
- W2792023360 countsByYear W27920233602023 @default.
- W2792023360 crossrefType "journal-article" @default.
- W2792023360 hasAuthorship W2792023360A5002788521 @default.
- W2792023360 hasAuthorship W2792023360A5032708386 @default.
- W2792023360 hasAuthorship W2792023360A5048895819 @default.
- W2792023360 hasAuthorship W2792023360A5054382056 @default.
- W2792023360 hasAuthorship W2792023360A5062994651 @default.
- W2792023360 hasAuthorship W2792023360A5064085064 @default.
- W2792023360 hasAuthorship W2792023360A5071132796 @default.
- W2792023360 hasAuthorship W2792023360A5088035307 @default.
- W2792023360 hasAuthorship W2792023360A5088302108 @default.
- W2792023360 hasAuthorship W2792023360A5090516040 @default.
- W2792023360 hasBestOaLocation W27920233601 @default.
- W2792023360 hasConcept C119857082 @default.
- W2792023360 hasConcept C124504099 @default.
- W2792023360 hasConcept C151730666 @default.
- W2792023360 hasConcept C153180895 @default.
- W2792023360 hasConcept C154945302 @default.
- W2792023360 hasConcept C163892561 @default.
- W2792023360 hasConcept C2776145597 @default.
- W2792023360 hasConcept C2779343474 @default.
- W2792023360 hasConcept C2780226545 @default.
- W2792023360 hasConcept C31972630 @default.
- W2792023360 hasConcept C41008148 @default.
- W2792023360 hasConcept C54170458 @default.
- W2792023360 hasConcept C81363708 @default.
- W2792023360 hasConcept C86803240 @default.
- W2792023360 hasConcept C89600930 @default.
- W2792023360 hasConcept C97931131 @default.
- W2792023360 hasConceptScore W2792023360C119857082 @default.
- W2792023360 hasConceptScore W2792023360C124504099 @default.
- W2792023360 hasConceptScore W2792023360C151730666 @default.
- W2792023360 hasConceptScore W2792023360C153180895 @default.
- W2792023360 hasConceptScore W2792023360C154945302 @default.
- W2792023360 hasConceptScore W2792023360C163892561 @default.
- W2792023360 hasConceptScore W2792023360C2776145597 @default.
- W2792023360 hasConceptScore W2792023360C2779343474 @default.
- W2792023360 hasConceptScore W2792023360C2780226545 @default.
- W2792023360 hasConceptScore W2792023360C31972630 @default.