Matches in SemOpenAlex for { <https://semopenalex.org/work/W2792023394> ?p ?o ?g. }
- W2792023394 endingPage "207" @default.
- W2792023394 startingPage "193" @default.
- W2792023394 abstract "Although enhanced over prior Landsat instruments, Landsat 8 OLI can obtain very high cloud detection precisions, but for the detection of cloud shadows, it still faces great challenges. Geometry-based cloud shadow detection methods are considered the most effective and are being improved constantly. The Function of Mask (Fmask) cloud shadow detection method is one of the most representative geometry-based methods that has been used for cloud shadow detection with Landsat 8 OLI. However, the Fmask method estimates cloud height employing fixed temperature rates, which are highly uncertain, and errors of large area cloud shadow detection can be caused by errors in estimations of cloud height. This article improves the geometry-based cloud shadow detection method for Landsat OLI from the following two aspects. (1) Cloud height no longer depends on the brightness temperature of the thermal infrared band but uses a possible dynamic range from 200 m to 12,000 m. In this case, cloud shadow is not a specific location but a possible range. Further analysis was carried out in the possible range based on the spectrum to determine cloud shadow location. This effectively avoids the cloud shadow leakage caused by the error in the height determination of a cloud. (2) Object-based and pixel spectral analyses are combined to detect cloud shadows, which can realize cloud shadow detection from two aspects of target scale and pixel scale. Based on the analysis of the spectral differences between the cloud shadow and typical ground objects, the best cloud shadow detection bands of Landsat 8 OLI were determined. The combined use of spectrum and shape can effectively improve the detection precision of cloud shadows produced by thin clouds. Several cloud shadow detection experiments were carried out, and the results were verified by the results of artificial recognition. The results of these experiments indicated that this method can identify cloud shadows in different regions with correct accuracy exceeding 80%, approximately 5% of the areas were wrongly identified, and approximately 10% of the cloud shadow areas were missing. The accuracy of this method is obviously higher than the recognition accuracy of Fmask, which has correct accuracy lower than 60%, and the missing recognition is approximately 40%." @default.
- W2792023394 created "2018-03-29" @default.
- W2792023394 creator A5011251265 @default.
- W2792023394 creator A5018668652 @default.
- W2792023394 creator A5026419258 @default.
- W2792023394 creator A5055056507 @default.
- W2792023394 creator A5063131315 @default.
- W2792023394 creator A5079722352 @default.
- W2792023394 date "2018-04-01" @default.
- W2792023394 modified "2023-10-14" @default.
- W2792023394 title "A cloud shadow detection method combined with cloud height iteration and spectral analysis for Landsat 8 OLI data" @default.
- W2792023394 cites W1963768209 @default.
- W2792023394 cites W1981435276 @default.
- W2792023394 cites W1986812789 @default.
- W2792023394 cites W1993283248 @default.
- W2792023394 cites W1994534107 @default.
- W2792023394 cites W1997309697 @default.
- W2792023394 cites W1997887332 @default.
- W2792023394 cites W2006185138 @default.
- W2792023394 cites W2008789742 @default.
- W2792023394 cites W2019812041 @default.
- W2792023394 cites W2025745000 @default.
- W2792023394 cites W2028240797 @default.
- W2792023394 cites W2030851497 @default.
- W2792023394 cites W2060897350 @default.
- W2792023394 cites W2066633241 @default.
- W2792023394 cites W2077509829 @default.
- W2792023394 cites W2078163022 @default.
- W2792023394 cites W2086620533 @default.
- W2792023394 cites W2103039718 @default.
- W2792023394 cites W2114592457 @default.
- W2792023394 cites W2114832532 @default.
- W2792023394 cites W2121690928 @default.
- W2792023394 cites W2139709933 @default.
- W2792023394 cites W2157675604 @default.
- W2792023394 cites W2159443068 @default.
- W2792023394 cites W2463021868 @default.
- W2792023394 cites W2566143549 @default.
- W2792023394 cites W4255029902 @default.
- W2792023394 cites W8591611 @default.
- W2792023394 doi "https://doi.org/10.1016/j.isprsjprs.2018.02.016" @default.
- W2792023394 hasPublicationYear "2018" @default.
- W2792023394 type Work @default.
- W2792023394 sameAs 2792023394 @default.
- W2792023394 citedByCount "29" @default.
- W2792023394 countsByYear W27920233942018 @default.
- W2792023394 countsByYear W27920233942019 @default.
- W2792023394 countsByYear W27920233942020 @default.
- W2792023394 countsByYear W27920233942021 @default.
- W2792023394 countsByYear W27920233942022 @default.
- W2792023394 countsByYear W27920233942023 @default.
- W2792023394 crossrefType "journal-article" @default.
- W2792023394 hasAuthorship W2792023394A5011251265 @default.
- W2792023394 hasAuthorship W2792023394A5018668652 @default.
- W2792023394 hasAuthorship W2792023394A5026419258 @default.
- W2792023394 hasAuthorship W2792023394A5055056507 @default.
- W2792023394 hasAuthorship W2792023394A5063131315 @default.
- W2792023394 hasAuthorship W2792023394A5079722352 @default.
- W2792023394 hasConcept C111919701 @default.
- W2792023394 hasConcept C117797892 @default.
- W2792023394 hasConcept C120665830 @default.
- W2792023394 hasConcept C121332964 @default.
- W2792023394 hasConcept C125245961 @default.
- W2792023394 hasConcept C127313418 @default.
- W2792023394 hasConcept C15744967 @default.
- W2792023394 hasConcept C160633673 @default.
- W2792023394 hasConcept C205649164 @default.
- W2792023394 hasConcept C2778755073 @default.
- W2792023394 hasConcept C31972630 @default.
- W2792023394 hasConcept C39432304 @default.
- W2792023394 hasConcept C41008148 @default.
- W2792023394 hasConcept C542102704 @default.
- W2792023394 hasConcept C58640448 @default.
- W2792023394 hasConcept C62649853 @default.
- W2792023394 hasConcept C79974875 @default.
- W2792023394 hasConceptScore W2792023394C111919701 @default.
- W2792023394 hasConceptScore W2792023394C117797892 @default.
- W2792023394 hasConceptScore W2792023394C120665830 @default.
- W2792023394 hasConceptScore W2792023394C121332964 @default.
- W2792023394 hasConceptScore W2792023394C125245961 @default.
- W2792023394 hasConceptScore W2792023394C127313418 @default.
- W2792023394 hasConceptScore W2792023394C15744967 @default.
- W2792023394 hasConceptScore W2792023394C160633673 @default.
- W2792023394 hasConceptScore W2792023394C205649164 @default.
- W2792023394 hasConceptScore W2792023394C2778755073 @default.
- W2792023394 hasConceptScore W2792023394C31972630 @default.
- W2792023394 hasConceptScore W2792023394C39432304 @default.
- W2792023394 hasConceptScore W2792023394C41008148 @default.
- W2792023394 hasConceptScore W2792023394C542102704 @default.
- W2792023394 hasConceptScore W2792023394C58640448 @default.
- W2792023394 hasConceptScore W2792023394C62649853 @default.
- W2792023394 hasConceptScore W2792023394C79974875 @default.
- W2792023394 hasFunder F4320321001 @default.
- W2792023394 hasFunder F4320322522 @default.
- W2792023394 hasFunder F4320324174 @default.
- W2792023394 hasLocation W27920233941 @default.
- W2792023394 hasOpenAccess W2792023394 @default.
- W2792023394 hasPrimaryLocation W27920233941 @default.