Matches in SemOpenAlex for { <https://semopenalex.org/work/W2792034376> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2792034376 endingPage "45" @default.
- W2792034376 startingPage "33" @default.
- W2792034376 abstract "Graph, a kind of structured data, is widely used to model complex relationships among objects, and has been used in various of scientific and engineering fields, such as bioinformatics, network intrusion detection, social network, etc. Building an automatic and highly accurate classification method for graphs becomes quite necessary for predicting unknown graphs or understanding complex structures among different categories. The kernel method is regarded as a powerful solution to graph classification, which consists of two steps, namely, graph kernel mapping and classification. However, the feature selection process is ignored, and those sub-structures with low discriminative power result in classification accuracy decrease. In order to solve this problem, we propose an efficient graph classification algorithm based on graph set reconstruction and graph kernel feature reduction. First of all, the least discriminative frequent subgraphs and part of the infrequent subgraphs are removed to reconstruct the original graph set. Then we adopt the graph-kernel-based discriminant analysis method to perform feature reduction on the well-reconstructed graph set. At last, the whole framework of the graph classification method is introduced and any commonly used classifiers can be utilized. Extensive experimental results on a series of bioinformatics benchmarks show that our graph classification algorithm demonstrates a significant improvement of prediction comparing with other graph-kernel-based classification approaches." @default.
- W2792034376 created "2018-03-29" @default.
- W2792034376 creator A5053920875 @default.
- W2792034376 creator A5056771555 @default.
- W2792034376 creator A5073877942 @default.
- W2792034376 creator A5077087945 @default.
- W2792034376 date "2018-06-01" @default.
- W2792034376 modified "2023-10-10" @default.
- W2792034376 title "Graph classification based on graph set reconstruction and graph kernel feature reduction" @default.
- W2792034376 cites W1479970606 @default.
- W2792034376 cites W1484412132 @default.
- W2792034376 cites W1972702299 @default.
- W2792034376 cites W1981195355 @default.
- W2792034376 cites W2025167103 @default.
- W2792034376 cites W2028759731 @default.
- W2792034376 cites W2056562706 @default.
- W2792034376 cites W2083761388 @default.
- W2792034376 cites W2087630789 @default.
- W2792034376 cites W2101940264 @default.
- W2792034376 cites W2123432324 @default.
- W2792034376 cites W2138361364 @default.
- W2792034376 cites W2176583664 @default.
- W2792034376 cites W2337802099 @default.
- W2792034376 cites W2399346891 @default.
- W2792034376 cites W2468241156 @default.
- W2792034376 cites W2569951966 @default.
- W2792034376 cites W2620846946 @default.
- W2792034376 cites W3141200963 @default.
- W2792034376 cites W3144386677 @default.
- W2792034376 cites W4253733157 @default.
- W2792034376 cites W4376848346 @default.
- W2792034376 cites W839407891 @default.
- W2792034376 doi "https://doi.org/10.1016/j.neucom.2018.03.029" @default.
- W2792034376 hasPublicationYear "2018" @default.
- W2792034376 type Work @default.
- W2792034376 sameAs 2792034376 @default.
- W2792034376 citedByCount "33" @default.
- W2792034376 countsByYear W27920343762018 @default.
- W2792034376 countsByYear W27920343762019 @default.
- W2792034376 countsByYear W27920343762020 @default.
- W2792034376 countsByYear W27920343762021 @default.
- W2792034376 countsByYear W27920343762022 @default.
- W2792034376 countsByYear W27920343762023 @default.
- W2792034376 crossrefType "journal-article" @default.
- W2792034376 hasAuthorship W2792034376A5053920875 @default.
- W2792034376 hasAuthorship W2792034376A5056771555 @default.
- W2792034376 hasAuthorship W2792034376A5073877942 @default.
- W2792034376 hasAuthorship W2792034376A5077087945 @default.
- W2792034376 hasBestOaLocation W27920343761 @default.
- W2792034376 hasConcept C100595998 @default.
- W2792034376 hasConcept C122280245 @default.
- W2792034376 hasConcept C12267149 @default.
- W2792034376 hasConcept C132525143 @default.
- W2792034376 hasConcept C153180895 @default.
- W2792034376 hasConcept C154945302 @default.
- W2792034376 hasConcept C160446489 @default.
- W2792034376 hasConcept C41008148 @default.
- W2792034376 hasConcept C80444323 @default.
- W2792034376 hasConcept C97931131 @default.
- W2792034376 hasConceptScore W2792034376C100595998 @default.
- W2792034376 hasConceptScore W2792034376C122280245 @default.
- W2792034376 hasConceptScore W2792034376C12267149 @default.
- W2792034376 hasConceptScore W2792034376C132525143 @default.
- W2792034376 hasConceptScore W2792034376C153180895 @default.
- W2792034376 hasConceptScore W2792034376C154945302 @default.
- W2792034376 hasConceptScore W2792034376C160446489 @default.
- W2792034376 hasConceptScore W2792034376C41008148 @default.
- W2792034376 hasConceptScore W2792034376C80444323 @default.
- W2792034376 hasConceptScore W2792034376C97931131 @default.
- W2792034376 hasFunder F4320321001 @default.
- W2792034376 hasLocation W27920343761 @default.
- W2792034376 hasOpenAccess W2792034376 @default.
- W2792034376 hasPrimaryLocation W27920343761 @default.
- W2792034376 hasRelatedWork W1489359949 @default.
- W2792034376 hasRelatedWork W1550105856 @default.
- W2792034376 hasRelatedWork W1992851697 @default.
- W2792034376 hasRelatedWork W2136184105 @default.
- W2792034376 hasRelatedWork W2153211825 @default.
- W2792034376 hasRelatedWork W2384238806 @default.
- W2792034376 hasRelatedWork W2543976960 @default.
- W2792034376 hasRelatedWork W2604913466 @default.
- W2792034376 hasRelatedWork W2907284999 @default.
- W2792034376 hasRelatedWork W4300454542 @default.
- W2792034376 hasVolume "296" @default.
- W2792034376 isParatext "false" @default.
- W2792034376 isRetracted "false" @default.
- W2792034376 magId "2792034376" @default.
- W2792034376 workType "article" @default.