Matches in SemOpenAlex for { <https://semopenalex.org/work/W2792091275> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2792091275 endingPage "4034" @default.
- W2792091275 startingPage "4023" @default.
- W2792091275 abstract "Urban travel time estimation is a strategically important task for many levels of traffic management and operation. Although a number of technologies regarding data and model have been developed recently, it has not been well solved yet given the following challenges: effective modeling approach, data sparsity, and traffic condition fluctuation. In this paper, a tensor-based spatial-temporal model is proposed for citywide travel time estimation, using the big and sparse GPS trajectories received from taxicabs. The travel time of different road segments under different traffic conditions in some time slots is modeled with a third-order tensor. Meanwhile, the occurrence probability of different traffic conditions on different road segments in these time slots are modeled with another third-order tensor. Combined with historical knowledge learned from trajectories, missing entries in the two tensors can be estimated by a context-aware tensor factorization approach. Based on the reconstruction results, for any road segment of the urban road network in the current time slot, we can know not only the travel times under different traffic conditions but also the occurrence probabilities of corresponding traffic conditions. The model incorporates both the spatial correlation between different road segments and the deviation between different traffic conditions, as well as the coarse-grain temporal correlation between recent and historical traffic conditions and the fine-grain temporal correlation between different time slots. The model is applied to a case study for the citywide road network of Beijing, China. Empirical results of extensive experiments, based on the GPS trajectories derived from over 32670 taxicabs for a period of two months, demonstrate that the model outperforms the competing methods in terms of both effectiveness and robustness." @default.
- W2792091275 created "2018-03-29" @default.
- W2792091275 creator A5002250184 @default.
- W2792091275 creator A5016757375 @default.
- W2792091275 creator A5041638594 @default.
- W2792091275 date "2018-12-01" @default.
- W2792091275 modified "2023-10-14" @default.
- W2792091275 title "Citywide Spatial-Temporal Travel Time Estimation Using Big and Sparse Trajectories" @default.
- W2792091275 cites W1798398164 @default.
- W2792091275 cites W1814521481 @default.
- W2792091275 cites W1875626450 @default.
- W2792091275 cites W1994413287 @default.
- W2792091275 cites W2000215628 @default.
- W2792091275 cites W2024165284 @default.
- W2792091275 cites W2026464360 @default.
- W2792091275 cites W2057817727 @default.
- W2792091275 cites W2069069662 @default.
- W2792091275 cites W2071729267 @default.
- W2792091275 cites W2073209910 @default.
- W2792091275 cites W2077963913 @default.
- W2792091275 cites W2094283130 @default.
- W2792091275 cites W2102937240 @default.
- W2792091275 cites W2112738128 @default.
- W2792091275 cites W2117131941 @default.
- W2792091275 cites W2130306081 @default.
- W2792091275 cites W2142382652 @default.
- W2792091275 cites W2144475703 @default.
- W2792091275 cites W2203947310 @default.
- W2792091275 cites W2327851229 @default.
- W2792091275 cites W2341354719 @default.
- W2792091275 cites W2343970958 @default.
- W2792091275 cites W2554727732 @default.
- W2792091275 cites W2556487516 @default.
- W2792091275 cites W2962917186 @default.
- W2792091275 cites W343162142 @default.
- W2792091275 doi "https://doi.org/10.1109/tits.2018.2803085" @default.
- W2792091275 hasPublicationYear "2018" @default.
- W2792091275 type Work @default.
- W2792091275 sameAs 2792091275 @default.
- W2792091275 citedByCount "34" @default.
- W2792091275 countsByYear W27920912752018 @default.
- W2792091275 countsByYear W27920912752019 @default.
- W2792091275 countsByYear W27920912752020 @default.
- W2792091275 countsByYear W27920912752021 @default.
- W2792091275 countsByYear W27920912752022 @default.
- W2792091275 countsByYear W27920912752023 @default.
- W2792091275 crossrefType "journal-article" @default.
- W2792091275 hasAuthorship W2792091275A5002250184 @default.
- W2792091275 hasAuthorship W2792091275A5016757375 @default.
- W2792091275 hasAuthorship W2792091275A5041638594 @default.
- W2792091275 hasBestOaLocation W27920912751 @default.
- W2792091275 hasConcept C124101348 @default.
- W2792091275 hasConcept C127413603 @default.
- W2792091275 hasConcept C166957645 @default.
- W2792091275 hasConcept C191935318 @default.
- W2792091275 hasConcept C201995342 @default.
- W2792091275 hasConcept C205649164 @default.
- W2792091275 hasConcept C2778304055 @default.
- W2792091275 hasConcept C2779343474 @default.
- W2792091275 hasConcept C41008148 @default.
- W2792091275 hasConcept C60229501 @default.
- W2792091275 hasConcept C75684735 @default.
- W2792091275 hasConcept C76155785 @default.
- W2792091275 hasConcept C96250715 @default.
- W2792091275 hasConceptScore W2792091275C124101348 @default.
- W2792091275 hasConceptScore W2792091275C127413603 @default.
- W2792091275 hasConceptScore W2792091275C166957645 @default.
- W2792091275 hasConceptScore W2792091275C191935318 @default.
- W2792091275 hasConceptScore W2792091275C201995342 @default.
- W2792091275 hasConceptScore W2792091275C205649164 @default.
- W2792091275 hasConceptScore W2792091275C2778304055 @default.
- W2792091275 hasConceptScore W2792091275C2779343474 @default.
- W2792091275 hasConceptScore W2792091275C41008148 @default.
- W2792091275 hasConceptScore W2792091275C60229501 @default.
- W2792091275 hasConceptScore W2792091275C75684735 @default.
- W2792091275 hasConceptScore W2792091275C76155785 @default.
- W2792091275 hasConceptScore W2792091275C96250715 @default.
- W2792091275 hasFunder F4320321001 @default.
- W2792091275 hasFunder F4320335787 @default.
- W2792091275 hasIssue "12" @default.
- W2792091275 hasLocation W27920912751 @default.
- W2792091275 hasOpenAccess W2792091275 @default.
- W2792091275 hasPrimaryLocation W27920912751 @default.
- W2792091275 hasRelatedWork W2015747722 @default.
- W2792091275 hasRelatedWork W2361035307 @default.
- W2792091275 hasRelatedWork W2362050182 @default.
- W2792091275 hasRelatedWork W2367835030 @default.
- W2792091275 hasRelatedWork W2369897927 @default.
- W2792091275 hasRelatedWork W2380455807 @default.
- W2792091275 hasRelatedWork W2382418233 @default.
- W2792091275 hasRelatedWork W2993975634 @default.
- W2792091275 hasRelatedWork W3031731056 @default.
- W2792091275 hasRelatedWork W4293167957 @default.
- W2792091275 hasVolume "19" @default.
- W2792091275 isParatext "false" @default.
- W2792091275 isRetracted "false" @default.
- W2792091275 magId "2792091275" @default.
- W2792091275 workType "article" @default.