Matches in SemOpenAlex for { <https://semopenalex.org/work/W279225087> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W279225087 endingPage "105" @default.
- W279225087 startingPage "91" @default.
- W279225087 abstract "Abstract Tontines were once a popular type of mortality-linked investment pool. They promised enormous rewards to the last survivors at the expense of those died early. While this design appealed to the gambling instinct, it is a suboptimal way to generate retirement income. Indeed, actuarially-fair life annuities making constant payments–where the insurance company is exposed to longevity risk–induce greater lifetime utility. However, tontines do not have to be structured the historical way, i.e. with a constant cash flow shared amongst a shrinking group of survivors. Moreover, insurance companies do not sell actuarially-fair life annuities, in part due to aggregate longevity risk. We derive the tontine structure that maximizes lifetime utility. Technically speaking we solve the Euler–Lagrange equation and examine its sensitivity to (i) the size of the tontine pool n , and (ii) individual longevity risk aversion γ . We examine how the optimal tontine varies with γ and n , and prove some qualitative theorems about the optimal payout. Interestingly, Lorenzo de Tonti’s original structure is optimal in the limit as longevity risk aversion γ → ∞ . We define the natural tontine as the function for which the payout declines in exact proportion to the survival probabilities, which we show is near-optimal for all γ and n . We conclude by comparing the utility of optimal tontines to the utility of loaded life annuities under reasonable demographic and economic conditions and find that the life annuity’s advantage over the optimal tontine is minimal. In sum, this paper’s contribution is to (i) rekindle a discussion about a retirement income product that has been long neglected, and (ii) leverage economic theory as well as tools from mathematical finance to design the next generation of tontine annuities." @default.
- W279225087 created "2016-06-24" @default.
- W279225087 creator A5043508017 @default.
- W279225087 creator A5069840106 @default.
- W279225087 date "2015-09-01" @default.
- W279225087 modified "2023-10-08" @default.
- W279225087 title "Optimal retirement income tontines" @default.
- W279225087 cites W1492900459 @default.
- W279225087 cites W1966041856 @default.
- W279225087 cites W1995964035 @default.
- W279225087 cites W2021325165 @default.
- W279225087 cites W2021514424 @default.
- W279225087 cites W2028704302 @default.
- W279225087 cites W2039040652 @default.
- W279225087 cites W2099949942 @default.
- W279225087 cites W2108933312 @default.
- W279225087 cites W2118602871 @default.
- W279225087 cites W2146122922 @default.
- W279225087 cites W2151702441 @default.
- W279225087 cites W2159572009 @default.
- W279225087 cites W2326102472 @default.
- W279225087 cites W3122620151 @default.
- W279225087 cites W3123358931 @default.
- W279225087 cites W3124479710 @default.
- W279225087 cites W3125221288 @default.
- W279225087 cites W3126144087 @default.
- W279225087 cites W1539816774 @default.
- W279225087 doi "https://doi.org/10.1016/j.insmatheco.2015.05.002" @default.
- W279225087 hasPublicationYear "2015" @default.
- W279225087 type Work @default.
- W279225087 sameAs 279225087 @default.
- W279225087 citedByCount "41" @default.
- W279225087 countsByYear W2792250872016 @default.
- W279225087 countsByYear W2792250872017 @default.
- W279225087 countsByYear W2792250872018 @default.
- W279225087 countsByYear W2792250872019 @default.
- W279225087 countsByYear W2792250872020 @default.
- W279225087 countsByYear W2792250872021 @default.
- W279225087 countsByYear W2792250872022 @default.
- W279225087 countsByYear W2792250872023 @default.
- W279225087 crossrefType "journal-article" @default.
- W279225087 hasAuthorship W279225087A5043508017 @default.
- W279225087 hasAuthorship W279225087A5069840106 @default.
- W279225087 hasBestOaLocation W2792250872 @default.
- W279225087 hasConcept C144133560 @default.
- W279225087 hasConcept C162118730 @default.
- W279225087 hasConcept C162324750 @default.
- W279225087 hasConceptScore W279225087C144133560 @default.
- W279225087 hasConceptScore W279225087C162118730 @default.
- W279225087 hasConceptScore W279225087C162324750 @default.
- W279225087 hasLocation W2792250871 @default.
- W279225087 hasLocation W2792250872 @default.
- W279225087 hasOpenAccess W279225087 @default.
- W279225087 hasPrimaryLocation W2792250871 @default.
- W279225087 hasRelatedWork W1502198272 @default.
- W279225087 hasRelatedWork W1986173648 @default.
- W279225087 hasRelatedWork W1998718379 @default.
- W279225087 hasRelatedWork W2006758266 @default.
- W279225087 hasRelatedWork W2017540542 @default.
- W279225087 hasRelatedWork W2066504725 @default.
- W279225087 hasRelatedWork W2073254488 @default.
- W279225087 hasRelatedWork W2405441039 @default.
- W279225087 hasRelatedWork W2582704060 @default.
- W279225087 hasRelatedWork W2899084033 @default.
- W279225087 hasVolume "64" @default.
- W279225087 isParatext "false" @default.
- W279225087 isRetracted "false" @default.
- W279225087 magId "279225087" @default.
- W279225087 workType "article" @default.