Matches in SemOpenAlex for { <https://semopenalex.org/work/W2792312242> ?p ?o ?g. }
- W2792312242 endingPage "1846" @default.
- W2792312242 startingPage "1826" @default.
- W2792312242 abstract "The smooth integration of counting and absolute deviation (SICA) penalty has been demonstrated theoretically and practically to be effective in non-convex penalization for variable selection. However, solving the non-convex optimization problem associated with the SICA penalty when the number of variables exceeds the sample size remains to be enriched due to the singularity at the origin and the non-convexity of the SICA penalty function. In this paper, we develop an efficient and accurate alternating direction method of multipliers with continuation algorithm for solving the SICA-penalized least squares problem in high dimensions. We establish the convergence property of the proposed algorithm under some mild regularity conditions and study the corresponding Karush–Kuhn–Tucker optimality condition. A high-dimensional Bayesian information criterion is developed to select the optimal tuning parameters. We conduct extensive simulations studies to evaluate the efficiency and accuracy of the proposed algorithm, while its practical usefulness is further illustrated with a high-dimensional microarray study." @default.
- W2792312242 created "2018-03-29" @default.
- W2792312242 creator A5032522521 @default.
- W2792312242 creator A5042620207 @default.
- W2792312242 creator A5080185313 @default.
- W2792312242 creator A5083578298 @default.
- W2792312242 date "2018-03-13" @default.
- W2792312242 modified "2023-10-16" @default.
- W2792312242 title "An ADMM with continuation algorithm for non-convex SICA-penalized regression in high dimensions" @default.
- W2792312242 cites W1540764732 @default.
- W2792312242 cites W1589848011 @default.
- W2792312242 cites W1965125844 @default.
- W2792312242 cites W1965169081 @default.
- W2792312242 cites W1977901803 @default.
- W2792312242 cites W1996515169 @default.
- W2792312242 cites W1997547860 @default.
- W2792312242 cites W2013916391 @default.
- W2792312242 cites W2020925091 @default.
- W2792312242 cites W2032674551 @default.
- W2792312242 cites W2036088641 @default.
- W2792312242 cites W2050031210 @default.
- W2792312242 cites W2074682976 @default.
- W2792312242 cites W2086205459 @default.
- W2792312242 cites W2093042090 @default.
- W2792312242 cites W2120875981 @default.
- W2792312242 cites W2143655919 @default.
- W2792312242 cites W2157076315 @default.
- W2792312242 cites W2614363831 @default.
- W2792312242 cites W2949483514 @default.
- W2792312242 cites W3099693088 @default.
- W2792312242 cites W3100058837 @default.
- W2792312242 cites W3100817920 @default.
- W2792312242 cites W3105034597 @default.
- W2792312242 cites W3106108064 @default.
- W2792312242 cites W3124114587 @default.
- W2792312242 cites W3151586227 @default.
- W2792312242 cites W317954863 @default.
- W2792312242 cites W4247571494 @default.
- W2792312242 cites W4292363360 @default.
- W2792312242 cites W4294541781 @default.
- W2792312242 cites W4312258136 @default.
- W2792312242 doi "https://doi.org/10.1080/00949655.2018.1448397" @default.
- W2792312242 hasPublicationYear "2018" @default.
- W2792312242 type Work @default.
- W2792312242 sameAs 2792312242 @default.
- W2792312242 citedByCount "10" @default.
- W2792312242 countsByYear W27923122422018 @default.
- W2792312242 countsByYear W27923122422019 @default.
- W2792312242 countsByYear W27923122422020 @default.
- W2792312242 countsByYear W27923122422022 @default.
- W2792312242 countsByYear W27923122422023 @default.
- W2792312242 crossrefType "journal-article" @default.
- W2792312242 hasAuthorship W2792312242A5032522521 @default.
- W2792312242 hasAuthorship W2792312242A5042620207 @default.
- W2792312242 hasAuthorship W2792312242A5080185313 @default.
- W2792312242 hasAuthorship W2792312242A5083578298 @default.
- W2792312242 hasConcept C105795698 @default.
- W2792312242 hasConcept C106159729 @default.
- W2792312242 hasConcept C112680207 @default.
- W2792312242 hasConcept C11413529 @default.
- W2792312242 hasConcept C126255220 @default.
- W2792312242 hasConcept C129848803 @default.
- W2792312242 hasConcept C148483581 @default.
- W2792312242 hasConcept C154945302 @default.
- W2792312242 hasConcept C157972887 @default.
- W2792312242 hasConcept C162324750 @default.
- W2792312242 hasConcept C185429906 @default.
- W2792312242 hasConcept C199360897 @default.
- W2792312242 hasConcept C2524010 @default.
- W2792312242 hasConcept C2777303404 @default.
- W2792312242 hasConcept C28826006 @default.
- W2792312242 hasConcept C33923547 @default.
- W2792312242 hasConcept C41008148 @default.
- W2792312242 hasConcept C50522688 @default.
- W2792312242 hasConcept C6180225 @default.
- W2792312242 hasConcept C72134830 @default.
- W2792312242 hasConcept C88626702 @default.
- W2792312242 hasConcept C9936470 @default.
- W2792312242 hasConceptScore W2792312242C105795698 @default.
- W2792312242 hasConceptScore W2792312242C106159729 @default.
- W2792312242 hasConceptScore W2792312242C112680207 @default.
- W2792312242 hasConceptScore W2792312242C11413529 @default.
- W2792312242 hasConceptScore W2792312242C126255220 @default.
- W2792312242 hasConceptScore W2792312242C129848803 @default.
- W2792312242 hasConceptScore W2792312242C148483581 @default.
- W2792312242 hasConceptScore W2792312242C154945302 @default.
- W2792312242 hasConceptScore W2792312242C157972887 @default.
- W2792312242 hasConceptScore W2792312242C162324750 @default.
- W2792312242 hasConceptScore W2792312242C185429906 @default.
- W2792312242 hasConceptScore W2792312242C199360897 @default.
- W2792312242 hasConceptScore W2792312242C2524010 @default.
- W2792312242 hasConceptScore W2792312242C2777303404 @default.
- W2792312242 hasConceptScore W2792312242C28826006 @default.
- W2792312242 hasConceptScore W2792312242C33923547 @default.
- W2792312242 hasConceptScore W2792312242C41008148 @default.
- W2792312242 hasConceptScore W2792312242C50522688 @default.
- W2792312242 hasConceptScore W2792312242C6180225 @default.
- W2792312242 hasConceptScore W2792312242C72134830 @default.