Matches in SemOpenAlex for { <https://semopenalex.org/work/W2792319327> ?p ?o ?g. }
- W2792319327 endingPage "142" @default.
- W2792319327 startingPage "142" @default.
- W2792319327 abstract "This article proposes a new general approach in short-term water demand forecasting based on a two-stage learning process that couples time-series clustering with gene expression programming (GEP). The approach was tested on the real life water demand data of the city of Milan, in Italy. Moreover, multi-scale modeling using a series of head-time was deployed to investigate the optimum temporal resolution under study. Multi-scale modeling was performed based on rearranging hourly based patterns of water demand into 3, 6, 12, and 24 h lead times. Results showed that GEP should receive more attention among the emerging nonlinear modelling techniques if coupled with unsupervised learning algorithms in detailed spherical k-means." @default.
- W2792319327 created "2018-03-29" @default.
- W2792319327 creator A5007832994 @default.
- W2792319327 creator A5011390491 @default.
- W2792319327 creator A5015369082 @default.
- W2792319327 creator A5061412397 @default.
- W2792319327 date "2018-02-02" @default.
- W2792319327 modified "2023-09-27" @default.
- W2792319327 title "Gene Expression Programming Coupled with Unsupervised Learning: A Two-Stage Learning Process in Multi-Scale, Short-Term Water Demand Forecasts" @default.
- W2792319327 cites W1518635102 @default.
- W2792319327 cites W1854912902 @default.
- W2792319327 cites W1916899590 @default.
- W2792319327 cites W1963496479 @default.
- W2792319327 cites W1979957032 @default.
- W2792319327 cites W1981751431 @default.
- W2792319327 cites W1985059878 @default.
- W2792319327 cites W2001168879 @default.
- W2792319327 cites W2008868646 @default.
- W2792319327 cites W2009276169 @default.
- W2792319327 cites W2012306021 @default.
- W2792319327 cites W2013355544 @default.
- W2792319327 cites W2015118277 @default.
- W2792319327 cites W2033093254 @default.
- W2792319327 cites W2040704490 @default.
- W2792319327 cites W2045044116 @default.
- W2792319327 cites W2049786051 @default.
- W2792319327 cites W2055002961 @default.
- W2792319327 cites W2062981820 @default.
- W2792319327 cites W2089295815 @default.
- W2792319327 cites W2106595237 @default.
- W2792319327 cites W2112930360 @default.
- W2792319327 cites W2122722067 @default.
- W2792319327 cites W2130109162 @default.
- W2792319327 cites W2146574767 @default.
- W2792319327 cites W2152323380 @default.
- W2792319327 cites W2279630689 @default.
- W2792319327 cites W2600845876 @default.
- W2792319327 cites W2612169505 @default.
- W2792319327 cites W2792206226 @default.
- W2792319327 cites W3104305579 @default.
- W2792319327 doi "https://doi.org/10.3390/w10020142" @default.
- W2792319327 hasPublicationYear "2018" @default.
- W2792319327 type Work @default.
- W2792319327 sameAs 2792319327 @default.
- W2792319327 citedByCount "25" @default.
- W2792319327 countsByYear W27923193272018 @default.
- W2792319327 countsByYear W27923193272019 @default.
- W2792319327 countsByYear W27923193272020 @default.
- W2792319327 countsByYear W27923193272021 @default.
- W2792319327 countsByYear W27923193272022 @default.
- W2792319327 countsByYear W27923193272023 @default.
- W2792319327 crossrefType "journal-article" @default.
- W2792319327 hasAuthorship W2792319327A5007832994 @default.
- W2792319327 hasAuthorship W2792319327A5011390491 @default.
- W2792319327 hasAuthorship W2792319327A5015369082 @default.
- W2792319327 hasAuthorship W2792319327A5061412397 @default.
- W2792319327 hasBestOaLocation W27923193271 @default.
- W2792319327 hasConcept C111919701 @default.
- W2792319327 hasConcept C119857082 @default.
- W2792319327 hasConcept C121332964 @default.
- W2792319327 hasConcept C124101348 @default.
- W2792319327 hasConcept C143724316 @default.
- W2792319327 hasConcept C146357865 @default.
- W2792319327 hasConcept C151730666 @default.
- W2792319327 hasConcept C154945302 @default.
- W2792319327 hasConcept C199360897 @default.
- W2792319327 hasConcept C205649164 @default.
- W2792319327 hasConcept C2778755073 @default.
- W2792319327 hasConcept C41008148 @default.
- W2792319327 hasConcept C58640448 @default.
- W2792319327 hasConcept C61797465 @default.
- W2792319327 hasConcept C62520636 @default.
- W2792319327 hasConcept C6980683 @default.
- W2792319327 hasConcept C73555534 @default.
- W2792319327 hasConcept C8038995 @default.
- W2792319327 hasConcept C86803240 @default.
- W2792319327 hasConcept C90559484 @default.
- W2792319327 hasConcept C98045186 @default.
- W2792319327 hasConceptScore W2792319327C111919701 @default.
- W2792319327 hasConceptScore W2792319327C119857082 @default.
- W2792319327 hasConceptScore W2792319327C121332964 @default.
- W2792319327 hasConceptScore W2792319327C124101348 @default.
- W2792319327 hasConceptScore W2792319327C143724316 @default.
- W2792319327 hasConceptScore W2792319327C146357865 @default.
- W2792319327 hasConceptScore W2792319327C151730666 @default.
- W2792319327 hasConceptScore W2792319327C154945302 @default.
- W2792319327 hasConceptScore W2792319327C199360897 @default.
- W2792319327 hasConceptScore W2792319327C205649164 @default.
- W2792319327 hasConceptScore W2792319327C2778755073 @default.
- W2792319327 hasConceptScore W2792319327C41008148 @default.
- W2792319327 hasConceptScore W2792319327C58640448 @default.
- W2792319327 hasConceptScore W2792319327C61797465 @default.
- W2792319327 hasConceptScore W2792319327C62520636 @default.
- W2792319327 hasConceptScore W2792319327C6980683 @default.
- W2792319327 hasConceptScore W2792319327C73555534 @default.
- W2792319327 hasConceptScore W2792319327C8038995 @default.
- W2792319327 hasConceptScore W2792319327C86803240 @default.
- W2792319327 hasConceptScore W2792319327C90559484 @default.