Matches in SemOpenAlex for { <https://semopenalex.org/work/W2792323218> ?p ?o ?g. }
- W2792323218 endingPage "543" @default.
- W2792323218 startingPage "534" @default.
- W2792323218 abstract "Large scale graphene sheets and other two-dimensional (2D) materials are commonly fabricated via chemical vapor deposition (CVD) technique which produces polycrystalline samples wherein Kapitza conductance along grain boundaries may substantially affect thermal transport. In this work, thermal conductivity of polycrystalline graphene (PG) was explored with grain sizes ranging from 2 nm to 10 nm employing non-equilibrium molecular dynamics (NEMD) simulations. Kapitza conductance at grain boundaries was estimated by fitting continuum models to the NEMD results. By calculating 2D temperature profile, both NEMD and continuum models show that Kapitza resistance is the dominant factor in thermal transport within PG with small grain sizes. Effects of nitrogen and boron doping and compressive and tensile strain on effective thermal conductivity of PG nanomembranes were further investigated. The results showed that, doping affects neither the Kapitza conductance nor the thermal conductivity of PG with nano-sized grains. Moreover, applying strain to PG in two directions, namely parallel and normal to the heat flow direction, suppress the thermal conductivity by increasing the grain size. The obtained results can provide useful understanding about heat transport not only in the polycrystalline graphene, but also in other CVD-grown 2D materials." @default.
- W2792323218 created "2018-03-29" @default.
- W2792323218 creator A5023575632 @default.
- W2792323218 creator A5069682313 @default.
- W2792323218 date "2018-08-01" @default.
- W2792323218 modified "2023-09-26" @default.
- W2792323218 title "Engineering of thermal transport in graphene using grain size, strain, nitrogen and boron doping; a multiscale modeling" @default.
- W2792323218 cites W1517436894 @default.
- W2792323218 cites W1587459109 @default.
- W2792323218 cites W1666655247 @default.
- W2792323218 cites W1808915480 @default.
- W2792323218 cites W1816689112 @default.
- W2792323218 cites W1826997023 @default.
- W2792323218 cites W1970311092 @default.
- W2792323218 cites W1990352764 @default.
- W2792323218 cites W1994704665 @default.
- W2792323218 cites W1997755575 @default.
- W2792323218 cites W2000956668 @default.
- W2792323218 cites W2001567980 @default.
- W2792323218 cites W2004761073 @default.
- W2792323218 cites W2007328737 @default.
- W2792323218 cites W2009937807 @default.
- W2792323218 cites W2018134586 @default.
- W2792323218 cites W2024966938 @default.
- W2792323218 cites W2033169497 @default.
- W2792323218 cites W2040162537 @default.
- W2792323218 cites W2042027875 @default.
- W2792323218 cites W2051342561 @default.
- W2792323218 cites W2057626905 @default.
- W2792323218 cites W2064473083 @default.
- W2792323218 cites W2065172074 @default.
- W2792323218 cites W2066440206 @default.
- W2792323218 cites W2068542474 @default.
- W2792323218 cites W2078881104 @default.
- W2792323218 cites W2079573432 @default.
- W2792323218 cites W2082215061 @default.
- W2792323218 cites W2082763399 @default.
- W2792323218 cites W2091217879 @default.
- W2792323218 cites W2091997682 @default.
- W2792323218 cites W2094765640 @default.
- W2792323218 cites W2102617962 @default.
- W2792323218 cites W2122040499 @default.
- W2792323218 cites W2139901312 @default.
- W2792323218 cites W2145438634 @default.
- W2792323218 cites W2147415793 @default.
- W2792323218 cites W2147792485 @default.
- W2792323218 cites W2298606405 @default.
- W2792323218 cites W2324292205 @default.
- W2792323218 cites W2324846091 @default.
- W2792323218 cites W2328623882 @default.
- W2792323218 cites W2328799914 @default.
- W2792323218 cites W2329325464 @default.
- W2792323218 cites W2352521959 @default.
- W2792323218 cites W2407398113 @default.
- W2792323218 cites W2470675431 @default.
- W2792323218 cites W2530427795 @default.
- W2792323218 cites W2593895683 @default.
- W2792323218 cites W2596876540 @default.
- W2792323218 cites W2597061855 @default.
- W2792323218 cites W2614041422 @default.
- W2792323218 cites W2614926051 @default.
- W2792323218 cites W2733347249 @default.
- W2792323218 cites W2744943579 @default.
- W2792323218 cites W2751717837 @default.
- W2792323218 cites W2754114208 @default.
- W2792323218 cites W2963051224 @default.
- W2792323218 cites W3099192924 @default.
- W2792323218 cites W894097937 @default.
- W2792323218 doi "https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.107" @default.
- W2792323218 hasPublicationYear "2018" @default.
- W2792323218 type Work @default.
- W2792323218 sameAs 2792323218 @default.
- W2792323218 citedByCount "34" @default.
- W2792323218 countsByYear W27923232182018 @default.
- W2792323218 countsByYear W27923232182019 @default.
- W2792323218 countsByYear W27923232182020 @default.
- W2792323218 countsByYear W27923232182021 @default.
- W2792323218 countsByYear W27923232182022 @default.
- W2792323218 countsByYear W27923232182023 @default.
- W2792323218 crossrefType "journal-article" @default.
- W2792323218 hasAuthorship W2792323218A5023575632 @default.
- W2792323218 hasAuthorship W2792323218A5069682313 @default.
- W2792323218 hasConcept C121332964 @default.
- W2792323218 hasConcept C137637335 @default.
- W2792323218 hasConcept C137693562 @default.
- W2792323218 hasConcept C159985019 @default.
- W2792323218 hasConcept C171250308 @default.
- W2792323218 hasConcept C178790620 @default.
- W2792323218 hasConcept C185592680 @default.
- W2792323218 hasConcept C191897082 @default.
- W2792323218 hasConcept C192191005 @default.
- W2792323218 hasConcept C192562407 @default.
- W2792323218 hasConcept C26873012 @default.
- W2792323218 hasConcept C30080830 @default.
- W2792323218 hasConcept C38653338 @default.
- W2792323218 hasConcept C47908070 @default.
- W2792323218 hasConcept C49040817 @default.
- W2792323218 hasConcept C501308230 @default.