Matches in SemOpenAlex for { <https://semopenalex.org/work/W2792328488> ?p ?o ?g. }
- W2792328488 endingPage "772" @default.
- W2792328488 startingPage "760" @default.
- W2792328488 abstract "Decision trees and logistic regression are two very popular algorithms in customer churn prediction with strong predictive performance and good comprehensibility. Despite these strengths, decision trees tend to have problems to handle linear relations between variables and logistic regression has difficulties with interaction effects between variables. Therefore a new hybrid algorithm, the logit leaf model (LLM), is proposed to better classify data. The idea behind the LLM is that different models constructed on segments of the data rather than on the entire dataset lead to better predictive performance while maintaining the comprehensibility from the models constructed in the leaves. The LLM consists of two stages: a segmentation phase and a prediction phase. In the first stage customer segments are identified using decision rules and in the second stage a model is created for every leaf of this tree. This new hybrid approach is benchmarked against decision trees, logistic regression, random forests and logistic model trees with regards to the predictive performance and comprehensibility. The area under the receiver operating characteristics curve (AUC) and top decile lift (TDL) are used to measure the predictive performance for which LLM scores significantly better than its building blocks logistic regression and decision trees and performs at least as well as more advanced ensemble methods random forests and logistic model trees. Comprehensibility is addressed by a case study for which we observe some key benefits using the LLM compared to using decision trees or logistic regression." @default.
- W2792328488 created "2018-03-29" @default.
- W2792328488 creator A5030823245 @default.
- W2792328488 creator A5030886962 @default.
- W2792328488 creator A5074562924 @default.
- W2792328488 date "2018-09-01" @default.
- W2792328488 modified "2023-10-16" @default.
- W2792328488 title "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees" @default.
- W2792328488 cites W107445507 @default.
- W2792328488 cites W1468091882 @default.
- W2792328488 cites W1517113043 @default.
- W2792328488 cites W1966021193 @default.
- W2792328488 cites W1971192722 @default.
- W2792328488 cites W1974013939 @default.
- W2792328488 cites W1981039744 @default.
- W2792328488 cites W1985344915 @default.
- W2792328488 cites W1988160630 @default.
- W2792328488 cites W1992004164 @default.
- W2792328488 cites W1994294106 @default.
- W2792328488 cites W1999835014 @default.
- W2792328488 cites W2006153161 @default.
- W2792328488 cites W2008358224 @default.
- W2792328488 cites W2016944307 @default.
- W2792328488 cites W2024046085 @default.
- W2792328488 cites W2026219386 @default.
- W2792328488 cites W2032081601 @default.
- W2792328488 cites W2032225949 @default.
- W2792328488 cites W2036547589 @default.
- W2792328488 cites W2041082016 @default.
- W2792328488 cites W2048755952 @default.
- W2792328488 cites W2053768216 @default.
- W2792328488 cites W2054640944 @default.
- W2792328488 cites W2061670499 @default.
- W2792328488 cites W2067594023 @default.
- W2792328488 cites W2068238590 @default.
- W2792328488 cites W2069300565 @default.
- W2792328488 cites W2071552263 @default.
- W2792328488 cites W2079286497 @default.
- W2792328488 cites W2087340651 @default.
- W2792328488 cites W2091171343 @default.
- W2792328488 cites W2092495914 @default.
- W2792328488 cites W2099043863 @default.
- W2792328488 cites W2106772961 @default.
- W2792328488 cites W2112591289 @default.
- W2792328488 cites W2114357029 @default.
- W2792328488 cites W2123877644 @default.
- W2792328488 cites W2125394697 @default.
- W2792328488 cites W2131816657 @default.
- W2792328488 cites W2133990480 @default.
- W2792328488 cites W2138123110 @default.
- W2792328488 cites W2142752589 @default.
- W2792328488 cites W2150884987 @default.
- W2792328488 cites W2152518947 @default.
- W2792328488 cites W2157825442 @default.
- W2792328488 cites W2159105921 @default.
- W2792328488 cites W2161634631 @default.
- W2792328488 cites W2165335390 @default.
- W2792328488 cites W2165466912 @default.
- W2792328488 cites W2167277498 @default.
- W2792328488 cites W2444264653 @default.
- W2792328488 cites W2473313289 @default.
- W2792328488 cites W2558749735 @default.
- W2792328488 cites W2593370983 @default.
- W2792328488 cites W2911964244 @default.
- W2792328488 cites W3123427206 @default.
- W2792328488 cites W3123614577 @default.
- W2792328488 cites W4246909570 @default.
- W2792328488 cites W812016355 @default.
- W2792328488 doi "https://doi.org/10.1016/j.ejor.2018.02.009" @default.
- W2792328488 hasPublicationYear "2018" @default.
- W2792328488 type Work @default.
- W2792328488 sameAs 2792328488 @default.
- W2792328488 citedByCount "277" @default.
- W2792328488 countsByYear W27923284882018 @default.
- W2792328488 countsByYear W27923284882019 @default.
- W2792328488 countsByYear W27923284882020 @default.
- W2792328488 countsByYear W27923284882021 @default.
- W2792328488 countsByYear W27923284882022 @default.
- W2792328488 countsByYear W27923284882023 @default.
- W2792328488 crossrefType "journal-article" @default.
- W2792328488 hasAuthorship W2792328488A5030823245 @default.
- W2792328488 hasAuthorship W2792328488A5030886962 @default.
- W2792328488 hasAuthorship W2792328488A5074562924 @default.
- W2792328488 hasConcept C105795698 @default.
- W2792328488 hasConcept C114494560 @default.
- W2792328488 hasConcept C119857082 @default.
- W2792328488 hasConcept C124101348 @default.
- W2792328488 hasConcept C137345334 @default.
- W2792328488 hasConcept C147021879 @default.
- W2792328488 hasConcept C151956035 @default.
- W2792328488 hasConcept C154945302 @default.
- W2792328488 hasConcept C169258074 @default.
- W2792328488 hasConcept C33923547 @default.
- W2792328488 hasConcept C41008148 @default.
- W2792328488 hasConcept C45804977 @default.
- W2792328488 hasConcept C5481197 @default.
- W2792328488 hasConcept C61722155 @default.
- W2792328488 hasConcept C84525736 @default.