Matches in SemOpenAlex for { <https://semopenalex.org/work/W2792672492> ?p ?o ?g. }
- W2792672492 endingPage "155" @default.
- W2792672492 startingPage "128" @default.
- W2792672492 abstract "To date, industrial antivirus tools are mostly using signature-based methods to detect malware occurrences. However, sophisticated malware, such as metamorphic or polymorphic virus, can effectively evade those tools by using some advanced obfuscation techniques, including mutation and the dynamically executed contents (DEC) methods, which dynamically produce new executable code in the run-time. Common DEC methods used by malware programs are packing or calling external code. In the research community, the approach of program analysis to detect suspicious behaviors has been emerging recently to handle this problem. Control flow graph (CFG) is a suitable representation to capture common behaviors from various mutated samples of virus. However, the current typical CFG forms generated by state-of-the-art binary analysis tools, such as IDA Pro, do not precisely reflect the behaviors of DEC methods. Moreover, this approach suffers from an extremely heavy cost to conduct and analyze the CFGs from binaries. This drawback causes the method of formal behavior analysis to be virtually not applicable with real-world applications. In this paper, we propose an enhanced form of CFG, known as lazy-binding CFG to reflect the DEC behaviors. Then, with the recent advancement of the deep learning techniques, we present a method of producing image-based representation from the generated CFG. As deep learning is very popular to perform image classification on very large dataset, our proposed technique can be applied for malware detection on real-world computer programs and thus enjoying very high accuracy. We also illustrate our analysis results with some well-known malware samples, including WannaCry, Kasperagent and Sality, one of the most sophisticated polymorphic viruses." @default.
- W2792672492 created "2018-03-29" @default.
- W2792672492 creator A5040245741 @default.
- W2792672492 creator A5052120793 @default.
- W2792672492 creator A5056767671 @default.
- W2792672492 creator A5078386445 @default.
- W2792672492 date "2018-07-01" @default.
- W2792672492 modified "2023-10-18" @default.
- W2792672492 title "Auto-detection of sophisticated malware using lazy-binding control flow graph and deep learning" @default.
- W2792672492 cites W1566135517 @default.
- W2792672492 cites W1964406293 @default.
- W2792672492 cites W1966556852 @default.
- W2792672492 cites W1967185446 @default.
- W2792672492 cites W1975966552 @default.
- W2792672492 cites W1981033991 @default.
- W2792672492 cites W2010910232 @default.
- W2792672492 cites W2016219933 @default.
- W2792672492 cites W2037109870 @default.
- W2792672492 cites W2043128754 @default.
- W2792672492 cites W2108104525 @default.
- W2792672492 cites W2110377720 @default.
- W2792672492 cites W2123845384 @default.
- W2792672492 cites W2124659400 @default.
- W2792672492 cites W2557601361 @default.
- W2792672492 cites W3123969097 @default.
- W2792672492 doi "https://doi.org/10.1016/j.cose.2018.02.006" @default.
- W2792672492 hasPublicationYear "2018" @default.
- W2792672492 type Work @default.
- W2792672492 sameAs 2792672492 @default.
- W2792672492 citedByCount "47" @default.
- W2792672492 countsByYear W27926724922018 @default.
- W2792672492 countsByYear W27926724922019 @default.
- W2792672492 countsByYear W27926724922020 @default.
- W2792672492 countsByYear W27926724922021 @default.
- W2792672492 countsByYear W27926724922022 @default.
- W2792672492 countsByYear W27926724922023 @default.
- W2792672492 crossrefType "journal-article" @default.
- W2792672492 hasAuthorship W2792672492A5040245741 @default.
- W2792672492 hasAuthorship W2792672492A5052120793 @default.
- W2792672492 hasAuthorship W2792672492A5056767671 @default.
- W2792672492 hasAuthorship W2792672492A5078386445 @default.
- W2792672492 hasConcept C108583219 @default.
- W2792672492 hasConcept C119857082 @default.
- W2792672492 hasConcept C124101348 @default.
- W2792672492 hasConcept C137287247 @default.
- W2792672492 hasConcept C154945302 @default.
- W2792672492 hasConcept C160145156 @default.
- W2792672492 hasConcept C160191386 @default.
- W2792672492 hasConcept C177264268 @default.
- W2792672492 hasConcept C17744445 @default.
- W2792672492 hasConcept C199360897 @default.
- W2792672492 hasConcept C199539241 @default.
- W2792672492 hasConcept C27458966 @default.
- W2792672492 hasConcept C2776359362 @default.
- W2792672492 hasConcept C2776760102 @default.
- W2792672492 hasConcept C2777904410 @default.
- W2792672492 hasConcept C33923547 @default.
- W2792672492 hasConcept C38652104 @default.
- W2792672492 hasConcept C40305131 @default.
- W2792672492 hasConcept C41008148 @default.
- W2792672492 hasConcept C48372109 @default.
- W2792672492 hasConcept C529173508 @default.
- W2792672492 hasConcept C541664917 @default.
- W2792672492 hasConcept C63435697 @default.
- W2792672492 hasConcept C80444323 @default.
- W2792672492 hasConcept C94375191 @default.
- W2792672492 hasConcept C94625758 @default.
- W2792672492 hasConcept C97686452 @default.
- W2792672492 hasConceptScore W2792672492C108583219 @default.
- W2792672492 hasConceptScore W2792672492C119857082 @default.
- W2792672492 hasConceptScore W2792672492C124101348 @default.
- W2792672492 hasConceptScore W2792672492C137287247 @default.
- W2792672492 hasConceptScore W2792672492C154945302 @default.
- W2792672492 hasConceptScore W2792672492C160145156 @default.
- W2792672492 hasConceptScore W2792672492C160191386 @default.
- W2792672492 hasConceptScore W2792672492C177264268 @default.
- W2792672492 hasConceptScore W2792672492C17744445 @default.
- W2792672492 hasConceptScore W2792672492C199360897 @default.
- W2792672492 hasConceptScore W2792672492C199539241 @default.
- W2792672492 hasConceptScore W2792672492C27458966 @default.
- W2792672492 hasConceptScore W2792672492C2776359362 @default.
- W2792672492 hasConceptScore W2792672492C2776760102 @default.
- W2792672492 hasConceptScore W2792672492C2777904410 @default.
- W2792672492 hasConceptScore W2792672492C33923547 @default.
- W2792672492 hasConceptScore W2792672492C38652104 @default.
- W2792672492 hasConceptScore W2792672492C40305131 @default.
- W2792672492 hasConceptScore W2792672492C41008148 @default.
- W2792672492 hasConceptScore W2792672492C48372109 @default.
- W2792672492 hasConceptScore W2792672492C529173508 @default.
- W2792672492 hasConceptScore W2792672492C541664917 @default.
- W2792672492 hasConceptScore W2792672492C63435697 @default.
- W2792672492 hasConceptScore W2792672492C80444323 @default.
- W2792672492 hasConceptScore W2792672492C94375191 @default.
- W2792672492 hasConceptScore W2792672492C94625758 @default.
- W2792672492 hasConceptScore W2792672492C97686452 @default.
- W2792672492 hasLocation W27926724921 @default.
- W2792672492 hasOpenAccess W2792672492 @default.
- W2792672492 hasPrimaryLocation W27926724921 @default.