Matches in SemOpenAlex for { <https://semopenalex.org/work/W2792675143> ?p ?o ?g. }
- W2792675143 endingPage "97" @default.
- W2792675143 startingPage "82" @default.
- W2792675143 abstract "Control systems engineering methods, particularly, system identification (system ID), offer an idiographic (i.e., person-specific) approach to develop dynamic models of physical activity (PA) that can be used to personalize interventions in a systematic, scalable way. The purpose of this work is to: (1) apply system ID to develop individual dynamical models of PA (steps/day measured using Fitbit Zip) in the context of a goal setting and positive reinforcement intervention informed by Social Cognitive Theory; and (2) compare insights on potential tailoring variables (i.e., predictors expected to influence steps and thus moderate the suggested step goal and points for goal achievement) selected using the idiographic models to those selected via a nomothetic (i.e., aggregated across individuals) approach. A personalized goal setting and positive reinforcement intervention was deployed for 14 weeks. Baseline PA measured in weeks 1–2 was used to inform personalized daily step goals delivered in weeks 3–14. Goals and expected reward points (granted upon goal achievement) were pseudo-randomly assigned using techniques from system ID, with goals ranging from their baseline median steps/day up to 2.5× baseline median steps/day, and points ranging from 100 to 500 (i.e., $0.20–$1.00). Participants completed a series of daily self-report measures. Auto Regressive with eXogenous Input (ARX) modeling and multilevel modeling (MLM) were used as the idiographic and nomothetic approaches, respectively. Participants (N = 20, mean age = 47.25 ± 6.16 years, 90% female) were insufficiently active, overweight (mean BMI = 33.79 ± 6.82 kg/m2) adults. Results from ARX modeling suggest that individuals differ in the factors (e.g., perceived stress, weekday/weekend) that influence their observed steps/day. In contrast, the nomothetic model from MLM suggested that goals and weekday/weekend were the key variables that were predictive of steps. Assuming the ARX models are more personalized, the obtained nomothetic model would have led to the identification of the same predictors for 5 of the 20 participants, suggesting a mismatch of plausible tailoring variables to use for 75% of the sample. The idiographic approach revealed person-specific predictors beyond traditional MLM analyses and unpacked the inherent complexity of PA; namely that people are different and context matters. System ID provides a feasible approach to develop personalized dynamical models of PA and inform person-specific tailoring variable selection for use in adaptive behavioral interventions." @default.
- W2792675143 created "2018-03-29" @default.
- W2792675143 creator A5000559212 @default.
- W2792675143 creator A5002925901 @default.
- W2792675143 creator A5014121970 @default.
- W2792675143 creator A5030910715 @default.
- W2792675143 creator A5066470406 @default.
- W2792675143 creator A5067879371 @default.
- W2792675143 creator A5075473434 @default.
- W2792675143 creator A5076309320 @default.
- W2792675143 creator A5078089549 @default.
- W2792675143 date "2018-03-01" @default.
- W2792675143 modified "2023-10-17" @default.
- W2792675143 title "Modeling individual differences: A case study of the application of system identification for personalizing a physical activity intervention" @default.
- W2792675143 cites W1528555758 @default.
- W2792675143 cites W1987543638 @default.
- W2792675143 cites W1988133012 @default.
- W2792675143 cites W1990998364 @default.
- W2792675143 cites W1994319704 @default.
- W2792675143 cites W1998025025 @default.
- W2792675143 cites W2008402393 @default.
- W2792675143 cites W2011946574 @default.
- W2792675143 cites W2017486987 @default.
- W2792675143 cites W2019449247 @default.
- W2792675143 cites W2021206292 @default.
- W2792675143 cites W2028828277 @default.
- W2792675143 cites W2031595758 @default.
- W2792675143 cites W2032423030 @default.
- W2792675143 cites W2037557484 @default.
- W2792675143 cites W2045951509 @default.
- W2792675143 cites W2047126199 @default.
- W2792675143 cites W2048524132 @default.
- W2792675143 cites W2065924779 @default.
- W2792675143 cites W2073520427 @default.
- W2792675143 cites W2077422864 @default.
- W2792675143 cites W2086310388 @default.
- W2792675143 cites W2089634059 @default.
- W2792675143 cites W2095865140 @default.
- W2792675143 cites W2097760682 @default.
- W2792675143 cites W2101965199 @default.
- W2792675143 cites W2103013187 @default.
- W2792675143 cites W2110709850 @default.
- W2792675143 cites W2112420523 @default.
- W2792675143 cites W2122909308 @default.
- W2792675143 cites W2123330495 @default.
- W2792675143 cites W2131046931 @default.
- W2792675143 cites W2143696727 @default.
- W2792675143 cites W2143967413 @default.
- W2792675143 cites W2144354402 @default.
- W2792675143 cites W2163084572 @default.
- W2792675143 cites W2164613013 @default.
- W2792675143 cites W2169530826 @default.
- W2792675143 cites W2171129594 @default.
- W2792675143 cites W2220182234 @default.
- W2792675143 cites W2273462684 @default.
- W2792675143 cites W2289697244 @default.
- W2792675143 cites W2358148633 @default.
- W2792675143 cites W2412436369 @default.
- W2792675143 cites W2427775456 @default.
- W2792675143 cites W2476010196 @default.
- W2792675143 cites W2514184829 @default.
- W2792675143 cites W2530300749 @default.
- W2792675143 cites W2531901946 @default.
- W2792675143 cites W2600230333 @default.
- W2792675143 cites W2735039792 @default.
- W2792675143 cites W359675729 @default.
- W2792675143 cites W4292808503 @default.
- W2792675143 doi "https://doi.org/10.1016/j.jbi.2018.01.010" @default.
- W2792675143 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29409750" @default.
- W2792675143 hasPublicationYear "2018" @default.
- W2792675143 type Work @default.
- W2792675143 sameAs 2792675143 @default.
- W2792675143 citedByCount "34" @default.
- W2792675143 countsByYear W27926751432018 @default.
- W2792675143 countsByYear W27926751432019 @default.
- W2792675143 countsByYear W27926751432020 @default.
- W2792675143 countsByYear W27926751432021 @default.
- W2792675143 countsByYear W27926751432022 @default.
- W2792675143 countsByYear W27926751432023 @default.
- W2792675143 crossrefType "journal-article" @default.
- W2792675143 hasAuthorship W2792675143A5000559212 @default.
- W2792675143 hasAuthorship W2792675143A5002925901 @default.
- W2792675143 hasAuthorship W2792675143A5014121970 @default.
- W2792675143 hasAuthorship W2792675143A5030910715 @default.
- W2792675143 hasAuthorship W2792675143A5066470406 @default.
- W2792675143 hasAuthorship W2792675143A5067879371 @default.
- W2792675143 hasAuthorship W2792675143A5075473434 @default.
- W2792675143 hasAuthorship W2792675143A5076309320 @default.
- W2792675143 hasAuthorship W2792675143A5078089549 @default.
- W2792675143 hasBestOaLocation W27926751431 @default.
- W2792675143 hasConcept C111368507 @default.
- W2792675143 hasConcept C116834253 @default.
- W2792675143 hasConcept C118552586 @default.
- W2792675143 hasConcept C119857082 @default.
- W2792675143 hasConcept C12725497 @default.
- W2792675143 hasConcept C127313418 @default.
- W2792675143 hasConcept C151243789 @default.
- W2792675143 hasConcept C151730666 @default.