Matches in SemOpenAlex for { <https://semopenalex.org/work/W2792693966> ?p ?o ?g. }
- W2792693966 endingPage "221" @default.
- W2792693966 startingPage "210" @default.
- W2792693966 abstract "Stocks, as the concrete manifestation of financial time series with plenty of potential information, are often used in the study of financial time series. In this paper, we utilize the stock data to recognize their patterns through out the dissimilarity matrix based on modified cross-sample entropy, then three-dimensional perceptual maps of the results are provided through multidimensional scaling method. Two modified multidimensional scaling methods are proposed in this paper, that is, multidimensional scaling based on Kronecker-delta cross-sample entropy (MDS-KCSE) and multidimensional scaling based on permutation cross-sample entropy (MDS-PCSE). These two methods use Kronecker-delta based cross-sample entropy and permutation based cross-sample entropy to replace the distance or dissimilarity measurement in classical multidimensional scaling (MDS). Multidimensional scaling based on Chebyshev distance (MDSC) is employed to provide a reference for comparisons. Our analysis reveals a clear clustering both in synthetic data and 18 indices from diverse stock markets. It implies that time series generated by the same model are easier to have similar irregularity than others, and the difference in the stock index, which is caused by the country or region and the different financial policies, can reflect the irregularity in the data. In the synthetic data experiments, not only the time series generated by different models can be distinguished, the one generated under different parameters of the same model can also be detected. In the financial data experiment, the stock indices are clearly divided into five groups. Through analysis, we find that they correspond to five regions, respectively, that is, Europe, North America, South America, Asian-Pacific (with the exception of mainland China), mainland China and Russia. The results also demonstrate that MDS-KCSE and MDS-PCSE provide more effective divisions in experiments than MDSC." @default.
- W2792693966 created "2018-03-29" @default.
- W2792693966 creator A5001846517 @default.
- W2792693966 creator A5029872341 @default.
- W2792693966 creator A5067731925 @default.
- W2792693966 date "2018-06-01" @default.
- W2792693966 modified "2023-10-16" @default.
- W2792693966 title "Multidimensional scaling analysis of financial time series based on modified cross-sample entropy methods" @default.
- W2792693966 cites W1184451806 @default.
- W2792693966 cites W1457236399 @default.
- W2792693966 cites W1862394037 @default.
- W2792693966 cites W1966421701 @default.
- W2792693966 cites W1974520683 @default.
- W2792693966 cites W1977869787 @default.
- W2792693966 cites W1983874789 @default.
- W2792693966 cites W1993436046 @default.
- W2792693966 cites W1997785309 @default.
- W2792693966 cites W2009869341 @default.
- W2792693966 cites W2014613182 @default.
- W2792693966 cites W2014683958 @default.
- W2792693966 cites W2029196312 @default.
- W2792693966 cites W2030863659 @default.
- W2792693966 cites W2031377725 @default.
- W2792693966 cites W2034696543 @default.
- W2792693966 cites W2037204309 @default.
- W2792693966 cites W2042841493 @default.
- W2792693966 cites W2050837097 @default.
- W2792693966 cites W2055781590 @default.
- W2792693966 cites W2057423435 @default.
- W2792693966 cites W2059353161 @default.
- W2792693966 cites W2077204677 @default.
- W2792693966 cites W2087196505 @default.
- W2792693966 cites W2088633034 @default.
- W2792693966 cites W2118183148 @default.
- W2792693966 cites W2120990369 @default.
- W2792693966 cites W2137199834 @default.
- W2792693966 cites W2139402913 @default.
- W2792693966 cites W2143255792 @default.
- W2792693966 cites W2152825437 @default.
- W2792693966 cites W2169283584 @default.
- W2792693966 cites W2170740451 @default.
- W2792693966 cites W2183317254 @default.
- W2792693966 cites W2327688165 @default.
- W2792693966 cites W2370236386 @default.
- W2792693966 cites W2404460811 @default.
- W2792693966 cites W2464550067 @default.
- W2792693966 cites W2520509115 @default.
- W2792693966 cites W2607854259 @default.
- W2792693966 cites W4242671632 @default.
- W2792693966 cites W4256550993 @default.
- W2792693966 cites W47746072 @default.
- W2792693966 doi "https://doi.org/10.1016/j.physa.2018.02.105" @default.
- W2792693966 hasPublicationYear "2018" @default.
- W2792693966 type Work @default.
- W2792693966 sameAs 2792693966 @default.
- W2792693966 citedByCount "9" @default.
- W2792693966 countsByYear W27926939662018 @default.
- W2792693966 countsByYear W27926939662019 @default.
- W2792693966 countsByYear W27926939662020 @default.
- W2792693966 countsByYear W27926939662021 @default.
- W2792693966 countsByYear W27926939662022 @default.
- W2792693966 countsByYear W27926939662023 @default.
- W2792693966 crossrefType "journal-article" @default.
- W2792693966 hasAuthorship W2792693966A5001846517 @default.
- W2792693966 hasAuthorship W2792693966A5029872341 @default.
- W2792693966 hasAuthorship W2792693966A5067731925 @default.
- W2792693966 hasConcept C10138342 @default.
- W2792693966 hasConcept C105795698 @default.
- W2792693966 hasConcept C106301342 @default.
- W2792693966 hasConcept C121332964 @default.
- W2792693966 hasConcept C149782125 @default.
- W2792693966 hasConcept C151406439 @default.
- W2792693966 hasConcept C162324750 @default.
- W2792693966 hasConcept C2524010 @default.
- W2792693966 hasConcept C33923547 @default.
- W2792693966 hasConcept C39482219 @default.
- W2792693966 hasConcept C41008148 @default.
- W2792693966 hasConcept C62520636 @default.
- W2792693966 hasConcept C66696666 @default.
- W2792693966 hasConcept C91682802 @default.
- W2792693966 hasConcept C99844830 @default.
- W2792693966 hasConceptScore W2792693966C10138342 @default.
- W2792693966 hasConceptScore W2792693966C105795698 @default.
- W2792693966 hasConceptScore W2792693966C106301342 @default.
- W2792693966 hasConceptScore W2792693966C121332964 @default.
- W2792693966 hasConceptScore W2792693966C149782125 @default.
- W2792693966 hasConceptScore W2792693966C151406439 @default.
- W2792693966 hasConceptScore W2792693966C162324750 @default.
- W2792693966 hasConceptScore W2792693966C2524010 @default.
- W2792693966 hasConceptScore W2792693966C33923547 @default.
- W2792693966 hasConceptScore W2792693966C39482219 @default.
- W2792693966 hasConceptScore W2792693966C41008148 @default.
- W2792693966 hasConceptScore W2792693966C62520636 @default.
- W2792693966 hasConceptScore W2792693966C66696666 @default.
- W2792693966 hasConceptScore W2792693966C91682802 @default.
- W2792693966 hasConceptScore W2792693966C99844830 @default.
- W2792693966 hasLocation W27926939661 @default.
- W2792693966 hasOpenAccess W2792693966 @default.