Matches in SemOpenAlex for { <https://semopenalex.org/work/W2792695933> ?p ?o ?g. }
- W2792695933 endingPage "185" @default.
- W2792695933 startingPage "185" @default.
- W2792695933 abstract "During cancer radiotherapy treatment, on-board four-dimensional-cone beam computed tomography (4D-CBCT) provides important patient 4D volumetric information for tumor target verification. Reconstruction of 4D-CBCT images requires sorting of acquired projections into different respiratory phases. Traditional phase sorting methods are either based on external surrogates, which might miscorrelate with internal structures; or on 2D internal structures, which require specific organ presence or slow gantry rotations. The aim of this study is to investigate the feasibility of a 3D motion modeling-based method for markerless 4D-CBCT projection-phase sorting.Patient 4D-CT images acquired during simulation are used as prior images. Principal component analysis (PCA) is used to extract three major respiratory deformation patterns. On-board patient image volume is considered as a deformation of the prior CT at the end-expiration phase. Coefficients of the principal deformation patterns are solved for each on-board projection by matching it with the digitally reconstructed radiograph (DRR) of the deformed prior CT. The primary PCA coefficients are used for the projection-phase sorting.PCA coefficients solved in nine digital phantoms (XCATs) showed the same pattern as the breathing motions in both the anteroposterior and superoinferior directions. The mean phase sorting differences were below 2% and percentages of phase difference < 10% were 100% for all the nine XCAT phantoms. Five lung cancer patient results showed mean phase difference ranging from 1.62% to 2.23%. The percentage of projections within 10% phase difference ranged from 98.4% to 100% and those within 5% phase difference ranged from 88.9% to 99.8%.The study demonstrated the feasibility of using PCA coefficients for 4D-CBCT projection-phase sorting. High sorting accuracy in both digital phantoms and patient cases was achieved. This method provides an accurate and robust tool for automatic 4D-CBCT projection sorting using 3D motion modeling without the need of external surrogate or internal markers." @default.
- W2792695933 created "2018-03-29" @default.
- W2792695933 creator A5002086817 @default.
- W2792695933 creator A5004109087 @default.
- W2792695933 creator A5042186997 @default.
- W2792695933 creator A5052884545 @default.
- W2792695933 creator A5071798264 @default.
- W2792695933 creator A5086877102 @default.
- W2792695933 creator A5087619761 @default.
- W2792695933 date "2017-01-01" @default.
- W2792695933 modified "2023-09-27" @default.
- W2792695933 title "Markerless four-dimensional-cone beam computed tomography projection-phase sorting using prior knowledge and patient motion modeling: A feasibility study" @default.
- W2792695933 cites W1839330960 @default.
- W2792695933 cites W1968223854 @default.
- W2792695933 cites W1968848224 @default.
- W2792695933 cites W1973820804 @default.
- W2792695933 cites W1974882184 @default.
- W2792695933 cites W1992740553 @default.
- W2792695933 cites W1993414901 @default.
- W2792695933 cites W1995854744 @default.
- W2792695933 cites W1996728714 @default.
- W2792695933 cites W2003685318 @default.
- W2792695933 cites W2013938113 @default.
- W2792695933 cites W2016295772 @default.
- W2792695933 cites W2032689204 @default.
- W2792695933 cites W2034511245 @default.
- W2792695933 cites W2042036475 @default.
- W2792695933 cites W2050747961 @default.
- W2792695933 cites W2051034690 @default.
- W2792695933 cites W2053958583 @default.
- W2792695933 cites W2059191333 @default.
- W2792695933 cites W2062462385 @default.
- W2792695933 cites W2063019627 @default.
- W2792695933 cites W2073955374 @default.
- W2792695933 cites W2076809618 @default.
- W2792695933 cites W2083256347 @default.
- W2792695933 cites W2093019862 @default.
- W2792695933 cites W2095549404 @default.
- W2792695933 cites W2109462047 @default.
- W2792695933 cites W2133025770 @default.
- W2792695933 cites W2145122414 @default.
- W2792695933 cites W2146414540 @default.
- W2792695933 cites W2149516706 @default.
- W2792695933 cites W2162992680 @default.
- W2792695933 cites W2168632045 @default.
- W2792695933 cites W2571613530 @default.
- W2792695933 cites W2601639251 @default.
- W2792695933 cites W3122435768 @default.
- W2792695933 doi "https://doi.org/10.4103/ctm.ctm_38_17" @default.
- W2792695933 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6101251" @default.
- W2792695933 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30135868" @default.
- W2792695933 hasPublicationYear "2017" @default.
- W2792695933 type Work @default.
- W2792695933 sameAs 2792695933 @default.
- W2792695933 citedByCount "2" @default.
- W2792695933 countsByYear W27926959332020 @default.
- W2792695933 countsByYear W27926959332022 @default.
- W2792695933 crossrefType "journal-article" @default.
- W2792695933 hasAuthorship W2792695933A5002086817 @default.
- W2792695933 hasAuthorship W2792695933A5004109087 @default.
- W2792695933 hasAuthorship W2792695933A5042186997 @default.
- W2792695933 hasAuthorship W2792695933A5052884545 @default.
- W2792695933 hasAuthorship W2792695933A5071798264 @default.
- W2792695933 hasAuthorship W2792695933A5086877102 @default.
- W2792695933 hasAuthorship W2792695933A5087619761 @default.
- W2792695933 hasBestOaLocation W27926959332 @default.
- W2792695933 hasConcept C111696304 @default.
- W2792695933 hasConcept C11413529 @default.
- W2792695933 hasConcept C126838900 @default.
- W2792695933 hasConcept C154945302 @default.
- W2792695933 hasConcept C27438332 @default.
- W2792695933 hasConcept C2779813781 @default.
- W2792695933 hasConcept C2989005 @default.
- W2792695933 hasConcept C31601959 @default.
- W2792695933 hasConcept C31972630 @default.
- W2792695933 hasConcept C33923547 @default.
- W2792695933 hasConcept C41008148 @default.
- W2792695933 hasConcept C544519230 @default.
- W2792695933 hasConcept C57493831 @default.
- W2792695933 hasConcept C71924100 @default.
- W2792695933 hasConceptScore W2792695933C111696304 @default.
- W2792695933 hasConceptScore W2792695933C11413529 @default.
- W2792695933 hasConceptScore W2792695933C126838900 @default.
- W2792695933 hasConceptScore W2792695933C154945302 @default.
- W2792695933 hasConceptScore W2792695933C27438332 @default.
- W2792695933 hasConceptScore W2792695933C2779813781 @default.
- W2792695933 hasConceptScore W2792695933C2989005 @default.
- W2792695933 hasConceptScore W2792695933C31601959 @default.
- W2792695933 hasConceptScore W2792695933C31972630 @default.
- W2792695933 hasConceptScore W2792695933C33923547 @default.
- W2792695933 hasConceptScore W2792695933C41008148 @default.
- W2792695933 hasConceptScore W2792695933C544519230 @default.
- W2792695933 hasConceptScore W2792695933C57493831 @default.
- W2792695933 hasConceptScore W2792695933C71924100 @default.
- W2792695933 hasIssue "6" @default.
- W2792695933 hasLocation W27926959331 @default.
- W2792695933 hasLocation W27926959332 @default.
- W2792695933 hasLocation W27926959333 @default.