Matches in SemOpenAlex for { <https://semopenalex.org/work/W2792839160> ?p ?o ?g. }
- W2792839160 endingPage "128" @default.
- W2792839160 startingPage "118" @default.
- W2792839160 abstract "Most recent learning-based image super-resolution (SR) methods have attracted much interest. This paper proposes a new SR method with multi-channel constraints, which integrates clustering, collaborative representation, and progressive multi-layer mapping relationships to reconstruct high-resolution (HR) color image. In order to collect chrominance information, the training patches from RGB channels are clustered into different subspaces, and a number of neighbor subsets are grouped. Then the optimization problem with color channel constraints is solved by using the classical gradient technique. Finally, a continuous reconstructive structure, which learns multi-layer mapping relationships between intermediate output and corresponding original HR image, is designed to obtain the desired HR image. Extensive experiments on several commonly used image SR testing datasets indicate that the proposed method achieves state-of-the-art image SR results." @default.
- W2792839160 created "2018-03-29" @default.
- W2792839160 creator A5028425938 @default.
- W2792839160 creator A5045211553 @default.
- W2792839160 date "2018-04-01" @default.
- W2792839160 modified "2023-09-27" @default.
- W2792839160 title "A new method for image super-resolution with multi-channel constraints" @default.
- W2792839160 cites W1985436611 @default.
- W2792839160 cites W1985806826 @default.
- W2792839160 cites W1992408872 @default.
- W2792839160 cites W2011952414 @default.
- W2792839160 cites W2044011870 @default.
- W2792839160 cites W2082114499 @default.
- W2792839160 cites W2088254198 @default.
- W2792839160 cites W2088869937 @default.
- W2792839160 cites W2096026309 @default.
- W2792839160 cites W2104098454 @default.
- W2792839160 cites W2108729907 @default.
- W2792839160 cites W2121058967 @default.
- W2792839160 cites W2123613719 @default.
- W2792839160 cites W2130187411 @default.
- W2792839160 cites W2133665775 @default.
- W2792839160 cites W2159269332 @default.
- W2792839160 cites W2165835468 @default.
- W2792839160 cites W2212985400 @default.
- W2792839160 cites W2266694576 @default.
- W2792839160 cites W2290061803 @default.
- W2792839160 cites W2344138609 @default.
- W2792839160 cites W2345557152 @default.
- W2792839160 cites W2397583963 @default.
- W2792839160 cites W2399409792 @default.
- W2792839160 cites W2409028535 @default.
- W2792839160 cites W2427936214 @default.
- W2792839160 cites W2435760661 @default.
- W2792839160 cites W2469023256 @default.
- W2792839160 cites W2509348655 @default.
- W2792839160 cites W2518224564 @default.
- W2792839160 cites W2527019762 @default.
- W2792839160 cites W2561139386 @default.
- W2792839160 cites W2569397590 @default.
- W2792839160 cites W2594779502 @default.
- W2792839160 cites W2618241468 @default.
- W2792839160 cites W3099089352 @default.
- W2792839160 cites W3104196124 @default.
- W2792839160 cites W3105700508 @default.
- W2792839160 doi "https://doi.org/10.1016/j.knosys.2018.01.034" @default.
- W2792839160 hasPublicationYear "2018" @default.
- W2792839160 type Work @default.
- W2792839160 sameAs 2792839160 @default.
- W2792839160 citedByCount "4" @default.
- W2792839160 countsByYear W27928391602019 @default.
- W2792839160 countsByYear W27928391602021 @default.
- W2792839160 countsByYear W27928391602022 @default.
- W2792839160 crossrefType "journal-article" @default.
- W2792839160 hasAuthorship W2792839160A5028425938 @default.
- W2792839160 hasAuthorship W2792839160A5045211553 @default.
- W2792839160 hasConcept C115961682 @default.
- W2792839160 hasConcept C12362212 @default.
- W2792839160 hasConcept C127162648 @default.
- W2792839160 hasConcept C142616399 @default.
- W2792839160 hasConcept C153180895 @default.
- W2792839160 hasConcept C154945302 @default.
- W2792839160 hasConcept C163204269 @default.
- W2792839160 hasConcept C17744445 @default.
- W2792839160 hasConcept C199539241 @default.
- W2792839160 hasConcept C2524010 @default.
- W2792839160 hasConcept C2776359362 @default.
- W2792839160 hasConcept C31258907 @default.
- W2792839160 hasConcept C31972630 @default.
- W2792839160 hasConcept C33923547 @default.
- W2792839160 hasConcept C41008148 @default.
- W2792839160 hasConcept C73313986 @default.
- W2792839160 hasConcept C73555534 @default.
- W2792839160 hasConcept C82990744 @default.
- W2792839160 hasConcept C9417928 @default.
- W2792839160 hasConcept C94625758 @default.
- W2792839160 hasConceptScore W2792839160C115961682 @default.
- W2792839160 hasConceptScore W2792839160C12362212 @default.
- W2792839160 hasConceptScore W2792839160C127162648 @default.
- W2792839160 hasConceptScore W2792839160C142616399 @default.
- W2792839160 hasConceptScore W2792839160C153180895 @default.
- W2792839160 hasConceptScore W2792839160C154945302 @default.
- W2792839160 hasConceptScore W2792839160C163204269 @default.
- W2792839160 hasConceptScore W2792839160C17744445 @default.
- W2792839160 hasConceptScore W2792839160C199539241 @default.
- W2792839160 hasConceptScore W2792839160C2524010 @default.
- W2792839160 hasConceptScore W2792839160C2776359362 @default.
- W2792839160 hasConceptScore W2792839160C31258907 @default.
- W2792839160 hasConceptScore W2792839160C31972630 @default.
- W2792839160 hasConceptScore W2792839160C33923547 @default.
- W2792839160 hasConceptScore W2792839160C41008148 @default.
- W2792839160 hasConceptScore W2792839160C73313986 @default.
- W2792839160 hasConceptScore W2792839160C73555534 @default.
- W2792839160 hasConceptScore W2792839160C82990744 @default.
- W2792839160 hasConceptScore W2792839160C9417928 @default.
- W2792839160 hasConceptScore W2792839160C94625758 @default.
- W2792839160 hasFunder F4320321001 @default.
- W2792839160 hasLocation W27928391601 @default.