Matches in SemOpenAlex for { <https://semopenalex.org/work/W2792862011> ?p ?o ?g. }
- W2792862011 endingPage "183" @default.
- W2792862011 startingPage "165" @default.
- W2792862011 abstract "Abstract Neighbors Embedding based pansharpening methods have received increasing interests in recent years. However, image patches do not strictly follow the similar structure in the shallow MultiSpectral (MS) and PANchromatic (PAN) image spaces, consequently leading to a bias to the pansharpening. In this paper, a new deep metric learning method is proposed to learn a refined geometric multi-manifold neighbor embedding, by exploring the hierarchical features of patches via multiple nonlinear deep neural networks. First of all, down-sampled PAN images from different satellites are divided into a large number of training image patches and are then grouped coarsely according to their shallow geometric structures. Afterwards, several Stacked Sparse AutoEncoders (SSAE) with similar structures are separately constructed and trained by these grouped patches. In the fusion, image patches of the source PAN image pass through the networks to extract features for formulating a deep distance metric and thus deriving their geometric labels. Then, patches with the same geometric labels are grouped to form geometric manifolds. Finally, the assumption that MS patches and PAN patches form the same geometric manifolds in two distinct spaces, is cast on geometric groups to formulate geometric multi-manifold embedding for estimating high resolution MS image patches. Some experiments are taken on datasets acquired by different satellites. The experimental results demonstrate that our proposed method can obtain better fusion results than its counterparts in terms of visual results and quantitative evaluations." @default.
- W2792862011 created "2018-03-29" @default.
- W2792862011 creator A5012176612 @default.
- W2792862011 creator A5033300023 @default.
- W2792862011 creator A5080902896 @default.
- W2792862011 creator A5089584286 @default.
- W2792862011 date "2018-11-01" @default.
- W2792862011 modified "2023-10-17" @default.
- W2792862011 title "Pan-sharpening via deep metric learning" @default.
- W2792862011 cites W1932847118 @default.
- W2792862011 cites W1973794531 @default.
- W2792862011 cites W1974755392 @default.
- W2792862011 cites W1976044762 @default.
- W2792862011 cites W1976447720 @default.
- W2792862011 cites W2004683109 @default.
- W2792862011 cites W2014316959 @default.
- W2792862011 cites W2014886478 @default.
- W2792862011 cites W2016520216 @default.
- W2792862011 cites W2032275874 @default.
- W2792862011 cites W2053186076 @default.
- W2792862011 cites W2070452328 @default.
- W2792862011 cites W2076434944 @default.
- W2792862011 cites W2085625911 @default.
- W2792862011 cites W2100604996 @default.
- W2792862011 cites W2105090634 @default.
- W2792862011 cites W2106891293 @default.
- W2792862011 cites W2111924917 @default.
- W2792862011 cites W2114113295 @default.
- W2792862011 cites W2119077559 @default.
- W2792862011 cites W2124743705 @default.
- W2792862011 cites W2124952510 @default.
- W2792862011 cites W2135442311 @default.
- W2792862011 cites W2144436897 @default.
- W2792862011 cites W2149720806 @default.
- W2792862011 cites W2156484002 @default.
- W2792862011 cites W2163334907 @default.
- W2792862011 cites W2163677711 @default.
- W2792862011 cites W2164306391 @default.
- W2792862011 cites W2171108951 @default.
- W2792862011 cites W2171211028 @default.
- W2792862011 cites W2267317359 @default.
- W2792862011 cites W2293262472 @default.
- W2792862011 cites W2295576075 @default.
- W2792862011 cites W2321571021 @default.
- W2792862011 cites W2339428543 @default.
- W2792862011 cites W2342880667 @default.
- W2792862011 cites W2460041091 @default.
- W2792862011 cites W2512351403 @default.
- W2792862011 cites W2519236071 @default.
- W2792862011 cites W2522698497 @default.
- W2792862011 cites W2523432824 @default.
- W2792862011 cites W2587329506 @default.
- W2792862011 cites W2615543373 @default.
- W2792862011 cites W4231109964 @default.
- W2792862011 doi "https://doi.org/10.1016/j.isprsjprs.2018.01.016" @default.
- W2792862011 hasPublicationYear "2018" @default.
- W2792862011 type Work @default.
- W2792862011 sameAs 2792862011 @default.
- W2792862011 citedByCount "52" @default.
- W2792862011 countsByYear W27928620112018 @default.
- W2792862011 countsByYear W27928620112019 @default.
- W2792862011 countsByYear W27928620112020 @default.
- W2792862011 countsByYear W27928620112021 @default.
- W2792862011 countsByYear W27928620112022 @default.
- W2792862011 countsByYear W27928620112023 @default.
- W2792862011 crossrefType "journal-article" @default.
- W2792862011 hasAuthorship W2792862011A5012176612 @default.
- W2792862011 hasAuthorship W2792862011A5033300023 @default.
- W2792862011 hasAuthorship W2792862011A5080902896 @default.
- W2792862011 hasAuthorship W2792862011A5089584286 @default.
- W2792862011 hasConcept C108583219 @default.
- W2792862011 hasConcept C127413603 @default.
- W2792862011 hasConcept C154945302 @default.
- W2792862011 hasConcept C176217482 @default.
- W2792862011 hasConcept C205649164 @default.
- W2792862011 hasConcept C21547014 @default.
- W2792862011 hasConcept C2781137444 @default.
- W2792862011 hasConcept C41008148 @default.
- W2792862011 hasConceptScore W2792862011C108583219 @default.
- W2792862011 hasConceptScore W2792862011C127413603 @default.
- W2792862011 hasConceptScore W2792862011C154945302 @default.
- W2792862011 hasConceptScore W2792862011C176217482 @default.
- W2792862011 hasConceptScore W2792862011C205649164 @default.
- W2792862011 hasConceptScore W2792862011C21547014 @default.
- W2792862011 hasConceptScore W2792862011C2781137444 @default.
- W2792862011 hasConceptScore W2792862011C41008148 @default.
- W2792862011 hasFunder F4320321001 @default.
- W2792862011 hasLocation W27928620111 @default.
- W2792862011 hasOpenAccess W2792862011 @default.
- W2792862011 hasPrimaryLocation W27928620111 @default.
- W2792862011 hasRelatedWork W2731899572 @default.
- W2792862011 hasRelatedWork W2748952813 @default.
- W2792862011 hasRelatedWork W2793428724 @default.
- W2792862011 hasRelatedWork W2801467094 @default.
- W2792862011 hasRelatedWork W2899084033 @default.
- W2792862011 hasRelatedWork W2939353110 @default.
- W2792862011 hasRelatedWork W2996333182 @default.
- W2792862011 hasRelatedWork W3009238340 @default.