Matches in SemOpenAlex for { <https://semopenalex.org/work/W2792869293> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2792869293 abstract "In the process of data analysis, the investigator is often facing highly-volatile and random-appearing observed data. A vast body of literature shows that the assumption of underlying stochastic processes was not necessarily representing the nature of the processes under investigation and, when other tools were used, deterministic features emerged. Non Linear Time Series Analysis (NLTS) allows researchers to test whether observed volatility conceals systematic non linear behavior, and to rigorously characterize governing dynamics. Behavioral patterns detected by non linear time series analysis, along with scientific principles and other expert information, guide the specification of mechanistic models that serve to explain real-world behavior rather than merely reproducing it. Often there is a misconception regarding the complexity of the level of mathematics needed to understand and utilize the tools of NLTS (for instance Chaos theory). However, mathematics used in NLTS is much simpler than many other subjects of science, such as mathematical topology, relativity or particle physics. For this reason, the tools of NLTS have been confined and utilized mostly in the fields of mathematics and physics. However, many natural phenomena investigated I many fields have been revealing deterministic non linear structures. In this book we aim at presenting the theory and the empirical of NLTS to a broader audience, to make this very powerful area of science available to many scientific areas. This book targets students and professionals in physics, engineering, biology, agriculture, economy and social sciences as a textbook in Nonlinear Time Series Analysis (NLTS) using the R computer language." @default.
- W2792869293 created "2018-03-29" @default.
- W2792869293 creator A5040479934 @default.
- W2792869293 creator A5077468552 @default.
- W2792869293 creator A5082773596 @default.
- W2792869293 date "2018-02-15" @default.
- W2792869293 modified "2023-09-24" @default.
- W2792869293 title "Nonlinear Time Series Analysis with R" @default.
- W2792869293 doi "https://doi.org/10.1093/oso/9780198782933.001.0001" @default.
- W2792869293 hasPublicationYear "2018" @default.
- W2792869293 type Work @default.
- W2792869293 sameAs 2792869293 @default.
- W2792869293 citedByCount "2" @default.
- W2792869293 countsByYear W27928692932022 @default.
- W2792869293 crossrefType "book" @default.
- W2792869293 hasAuthorship W2792869293A5040479934 @default.
- W2792869293 hasAuthorship W2792869293A5077468552 @default.
- W2792869293 hasAuthorship W2792869293A5082773596 @default.
- W2792869293 hasBestOaLocation W27928692932 @default.
- W2792869293 hasConcept C105795698 @default.
- W2792869293 hasConcept C119857082 @default.
- W2792869293 hasConcept C121332964 @default.
- W2792869293 hasConcept C143724316 @default.
- W2792869293 hasConcept C151406439 @default.
- W2792869293 hasConcept C151730666 @default.
- W2792869293 hasConcept C158622935 @default.
- W2792869293 hasConcept C2522767166 @default.
- W2792869293 hasConcept C33923547 @default.
- W2792869293 hasConcept C41008148 @default.
- W2792869293 hasConcept C62520636 @default.
- W2792869293 hasConcept C80444323 @default.
- W2792869293 hasConcept C8272713 @default.
- W2792869293 hasConcept C86803240 @default.
- W2792869293 hasConceptScore W2792869293C105795698 @default.
- W2792869293 hasConceptScore W2792869293C119857082 @default.
- W2792869293 hasConceptScore W2792869293C121332964 @default.
- W2792869293 hasConceptScore W2792869293C143724316 @default.
- W2792869293 hasConceptScore W2792869293C151406439 @default.
- W2792869293 hasConceptScore W2792869293C151730666 @default.
- W2792869293 hasConceptScore W2792869293C158622935 @default.
- W2792869293 hasConceptScore W2792869293C2522767166 @default.
- W2792869293 hasConceptScore W2792869293C33923547 @default.
- W2792869293 hasConceptScore W2792869293C41008148 @default.
- W2792869293 hasConceptScore W2792869293C62520636 @default.
- W2792869293 hasConceptScore W2792869293C80444323 @default.
- W2792869293 hasConceptScore W2792869293C8272713 @default.
- W2792869293 hasConceptScore W2792869293C86803240 @default.
- W2792869293 hasLocation W27928692931 @default.
- W2792869293 hasLocation W27928692932 @default.
- W2792869293 hasOpenAccess W2792869293 @default.
- W2792869293 hasPrimaryLocation W27928692931 @default.
- W2792869293 hasRelatedWork W1518641444 @default.
- W2792869293 hasRelatedWork W1549386224 @default.
- W2792869293 hasRelatedWork W1964571330 @default.
- W2792869293 hasRelatedWork W2001705550 @default.
- W2792869293 hasRelatedWork W2002669522 @default.
- W2792869293 hasRelatedWork W2007571690 @default.
- W2792869293 hasRelatedWork W2046626532 @default.
- W2792869293 hasRelatedWork W2047126708 @default.
- W2792869293 hasRelatedWork W2050081570 @default.
- W2792869293 hasRelatedWork W2083278075 @default.
- W2792869293 hasRelatedWork W2128513580 @default.
- W2792869293 hasRelatedWork W2132449672 @default.
- W2792869293 hasRelatedWork W2158458715 @default.
- W2792869293 hasRelatedWork W2165657316 @default.
- W2792869293 hasRelatedWork W2268760998 @default.
- W2792869293 hasRelatedWork W2580976787 @default.
- W2792869293 hasRelatedWork W2798790441 @default.
- W2792869293 hasRelatedWork W2991451289 @default.
- W2792869293 hasRelatedWork W3128754192 @default.
- W2792869293 hasRelatedWork W604342529 @default.
- W2792869293 isParatext "false" @default.
- W2792869293 isRetracted "false" @default.
- W2792869293 magId "2792869293" @default.
- W2792869293 workType "book" @default.