Matches in SemOpenAlex for { <https://semopenalex.org/work/W2793005752> ?p ?o ?g. }
- W2793005752 endingPage "269" @default.
- W2793005752 startingPage "255" @default.
- W2793005752 abstract "The challenges with current antimicrobial drug therapy and resistance remain a significant global health threat. Nanodrug delivery systems are playing a crucial role in overcoming these challenges and open new avenues for effective antimicrobial therapy. While fluticasone (FLU), a poorly water-soluble corticosteroid, has been reported to have potential antimicrobial activity, approaches to optimize its dissolution profile and antimicrobial activity are lacking in the literature. This study aimed to combine an experimental study with molecular modeling to design stable FLU nanopolymeric particles with enhanced dissolution rates and antimicrobial activity.Six different polymers were used to prepare FLU nanopolymeric particles: hydroxyl propyl methylcellulose (HPMC), poly (vinylpyrrolidone) (PVP), poly (vinyl alcohol) (PVA), ethyl cellulose (EC), Eudragit (EUD), and Pluronics®. A low-energy method, nanoprecipitation, was used to prepare the polymeric nanoparticles.The combination of HPMC-PVP and EUD-PVP was found most effective to produce stable FLU nanoparticles, with particle sizes of 250 nm ±2.0 and 280 nm ±4.2 and polydispersity indices of 0.15 nm ±0.01 and 0.25 nm ±0.03, respectively. The molecular modeling studies endorsed the same results, showing highest polymer drug binding free energies for HPMC-PVP-FLU (-35.22 kcal/mol ±0.79) and EUD-PVP-FLU (-25.17 kcal/mol ±1.12). In addition, it was observed that Ethocel® favored a wrapping mechanism around the drug molecules rather than a linear conformation that was witnessed for other individual polymers. The stability studies conducted for 90 days demonstrated that HPMC-PVP-FLU nanoparticles stored at 2°C-8°C and 25°C were more stable. Crystallinity of the processed FLU nanoparticles was confirmed using differential scanning calorimetry, powder X-ray diffraction analysis and TEM. The Fourier transform infrared spectroscopy (FTIR) studies showed that there was no chemical interaction between the drug and chosen polymer system. The HPMC-PVP-FLU nanoparticles also showed enhanced dissolution rate (P<0.05) compared to the unprocessed counterpart. The in vitro antibacterial studies showed that HPMC-PVP-FLU nanoparticles displayed superior effect against gram-positive bacteria compared to the unprocessed FLU and positive control." @default.
- W2793005752 created "2018-03-29" @default.
- W2793005752 creator A5029377984 @default.
- W2793005752 creator A5032222232 @default.
- W2793005752 creator A5033432031 @default.
- W2793005752 creator A5040688854 @default.
- W2793005752 creator A5063928797 @default.
- W2793005752 creator A5066889330 @default.
- W2793005752 creator A5068965772 @default.
- W2793005752 creator A5078586967 @default.
- W2793005752 creator A5079392897 @default.
- W2793005752 creator A5091345825 @default.
- W2793005752 date "2018-02-01" @default.
- W2793005752 modified "2023-10-17" @default.
- W2793005752 title "Experimental and molecular modeling approach to optimize suitable polymers for fabrication of stable fluticasone nanoparticles with enhanced dissolution and antimicrobial activity" @default.
- W2793005752 cites W1585705786 @default.
- W2793005752 cites W1605331080 @default.
- W2793005752 cites W1966461314 @default.
- W2793005752 cites W1967832380 @default.
- W2793005752 cites W1974471025 @default.
- W2793005752 cites W1975532235 @default.
- W2793005752 cites W1982996309 @default.
- W2793005752 cites W1983254345 @default.
- W2793005752 cites W1983773541 @default.
- W2793005752 cites W1986251008 @default.
- W2793005752 cites W1988505882 @default.
- W2793005752 cites W1994778680 @default.
- W2793005752 cites W1996697333 @default.
- W2793005752 cites W2002719309 @default.
- W2793005752 cites W2013980575 @default.
- W2793005752 cites W2017098745 @default.
- W2793005752 cites W2019874994 @default.
- W2793005752 cites W2024303172 @default.
- W2793005752 cites W2028338264 @default.
- W2793005752 cites W2029667189 @default.
- W2793005752 cites W2034493247 @default.
- W2793005752 cites W2037976634 @default.
- W2793005752 cites W2038375609 @default.
- W2793005752 cites W2044594845 @default.
- W2793005752 cites W2050117072 @default.
- W2793005752 cites W2056211275 @default.
- W2793005752 cites W2056405675 @default.
- W2793005752 cites W2059225643 @default.
- W2793005752 cites W2064140868 @default.
- W2793005752 cites W2065832534 @default.
- W2793005752 cites W2068196253 @default.
- W2793005752 cites W2071215562 @default.
- W2793005752 cites W2073533584 @default.
- W2793005752 cites W2074473216 @default.
- W2793005752 cites W2075828031 @default.
- W2793005752 cites W2078814811 @default.
- W2793005752 cites W2094070154 @default.
- W2793005752 cites W2098303853 @default.
- W2793005752 cites W2098329282 @default.
- W2793005752 cites W2103970111 @default.
- W2793005752 cites W2111954511 @default.
- W2793005752 cites W2115439624 @default.
- W2793005752 cites W2118233996 @default.
- W2793005752 cites W2131643298 @default.
- W2793005752 cites W2132629607 @default.
- W2793005752 cites W2142868265 @default.
- W2793005752 cites W2143776024 @default.
- W2793005752 cites W2151823004 @default.
- W2793005752 cites W2155435315 @default.
- W2793005752 cites W2156829937 @default.
- W2793005752 cites W2168656522 @default.
- W2793005752 cites W2173723808 @default.
- W2793005752 cites W2203264312 @default.
- W2793005752 cites W2292527339 @default.
- W2793005752 cites W2328990695 @default.
- W2793005752 cites W2412326609 @default.
- W2793005752 cites W2553944798 @default.
- W2793005752 cites W2592886702 @default.
- W2793005752 cites W34550318 @default.
- W2793005752 doi "https://doi.org/10.2147/dddt.s148912" @default.
- W2793005752 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5804124" @default.
- W2793005752 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29440875" @default.
- W2793005752 hasPublicationYear "2018" @default.
- W2793005752 type Work @default.
- W2793005752 sameAs 2793005752 @default.
- W2793005752 citedByCount "19" @default.
- W2793005752 countsByYear W27930057522019 @default.
- W2793005752 countsByYear W27930057522020 @default.
- W2793005752 countsByYear W27930057522021 @default.
- W2793005752 countsByYear W27930057522022 @default.
- W2793005752 crossrefType "journal-article" @default.
- W2793005752 hasAuthorship W2793005752A5029377984 @default.
- W2793005752 hasAuthorship W2793005752A5032222232 @default.
- W2793005752 hasAuthorship W2793005752A5033432031 @default.
- W2793005752 hasAuthorship W2793005752A5040688854 @default.
- W2793005752 hasAuthorship W2793005752A5063928797 @default.
- W2793005752 hasAuthorship W2793005752A5066889330 @default.
- W2793005752 hasAuthorship W2793005752A5068965772 @default.
- W2793005752 hasAuthorship W2793005752A5078586967 @default.
- W2793005752 hasAuthorship W2793005752A5079392897 @default.
- W2793005752 hasAuthorship W2793005752A5091345825 @default.
- W2793005752 hasBestOaLocation W27930057521 @default.
- W2793005752 hasConcept C11432220 @default.