Matches in SemOpenAlex for { <https://semopenalex.org/work/W2793014366> ?p ?o ?g. }
- W2793014366 abstract "Humans can visually estimate the mechanical properties of deformable objects (e.g. cloth stiffness). While much of the recent work on material perception has focused on static image cues (e.g., textures and shape), little is known whether humans can integrate information over time to make a judgment. Here, we investigate the effect of spatiotemporal information across multiple frames (multi-frame motion) on estimating the bending stiffness of cloth. Using high-fidelity cloth animations, we first examined how the perceived bending stiffness changed as a function of the physical bending stiffness defined in the simulation model. Using maximum likelihood difference scaling methods (MLDS) we found that the perceived stiffness and the physical bending stiffness were highly correlated. A second experiment in which we scrambled the frame sequences diminished this correlation. This suggests that multi-frame motion plays an important role. To provide further evidence for this finding, we extracted dense motion trajectories from the videos across 15 consecutive frames and used the trajectory descriptors to train a machine-learning model with the measured perceptual scales. The model can predict human perceptual scales in new videos with varied winds, optical properties of cloth, and scene setups. When the correct multi-frame was removed (using either scrambled videos or 2-frame optical flow to train the model), the predictions significantly worsened. Our findings demonstrate that multi-frame motion information is important for both humans and machines to estimate the mechanical properties. In addition, we show that dense motion trajectories are effective features to build a successful automatic cloth estimation system." @default.
- W2793014366 created "2018-03-29" @default.
- W2793014366 creator A5030337644 @default.
- W2793014366 creator A5048499786 @default.
- W2793014366 creator A5085027207 @default.
- W2793014366 creator A5088099909 @default.
- W2793014366 date "2018-03-15" @default.
- W2793014366 modified "2023-09-24" @default.
- W2793014366 title "Estimating mechanical properties of cloth from videos using dense motion trajectories: human psychophysics and machine learning" @default.
- W2793014366 cites W1606858007 @default.
- W2793014366 cites W1849277567 @default.
- W2793014366 cites W1966385142 @default.
- W2793014366 cites W1982590518 @default.
- W2793014366 cites W2000139664 @default.
- W2793014366 cites W2014988301 @default.
- W2793014366 cites W2025985273 @default.
- W2793014366 cites W2028847481 @default.
- W2793014366 cites W2030393769 @default.
- W2793014366 cites W2042827651 @default.
- W2793014366 cites W2049208961 @default.
- W2793014366 cites W2052037184 @default.
- W2793014366 cites W2059100041 @default.
- W2793014366 cites W2060063674 @default.
- W2793014366 cites W2065131936 @default.
- W2793014366 cites W2066707261 @default.
- W2793014366 cites W2068611653 @default.
- W2793014366 cites W2074401945 @default.
- W2793014366 cites W2084117684 @default.
- W2793014366 cites W2089218882 @default.
- W2793014366 cites W2091621584 @default.
- W2793014366 cites W2122195876 @default.
- W2793014366 cites W2126574503 @default.
- W2793014366 cites W2129966346 @default.
- W2793014366 cites W2130770231 @default.
- W2793014366 cites W2132580368 @default.
- W2793014366 cites W2151985450 @default.
- W2793014366 cites W2172212081 @default.
- W2793014366 cites W2280177137 @default.
- W2793014366 cites W2324997639 @default.
- W2793014366 cites W2341536747 @default.
- W2793014366 cites W2342662179 @default.
- W2793014366 cites W2461057386 @default.
- W2793014366 cites W2464834700 @default.
- W2793014366 cites W2510949419 @default.
- W2793014366 cites W2520428863 @default.
- W2793014366 cites W2581052146 @default.
- W2793014366 cites W2592295070 @default.
- W2793014366 cites W2598787266 @default.
- W2793014366 cites W2736021085 @default.
- W2793014366 cites W2778628554 @default.
- W2793014366 cites W2783292426 @default.
- W2793014366 cites W2963864102 @default.
- W2793014366 cites W4294940931 @default.
- W2793014366 doi "https://doi.org/10.1101/238782" @default.
- W2793014366 hasPublicationYear "2018" @default.
- W2793014366 type Work @default.
- W2793014366 sameAs 2793014366 @default.
- W2793014366 citedByCount "0" @default.
- W2793014366 crossrefType "posted-content" @default.
- W2793014366 hasAuthorship W2793014366A5030337644 @default.
- W2793014366 hasAuthorship W2793014366A5048499786 @default.
- W2793014366 hasAuthorship W2793014366A5085027207 @default.
- W2793014366 hasAuthorship W2793014366A5088099909 @default.
- W2793014366 hasBestOaLocation W27930143661 @default.
- W2793014366 hasConcept C104114177 @default.
- W2793014366 hasConcept C115961682 @default.
- W2793014366 hasConcept C121332964 @default.
- W2793014366 hasConcept C126042441 @default.
- W2793014366 hasConcept C127413603 @default.
- W2793014366 hasConcept C1276947 @default.
- W2793014366 hasConcept C128172907 @default.
- W2793014366 hasConcept C13662910 @default.
- W2793014366 hasConcept C15123163 @default.
- W2793014366 hasConcept C154945302 @default.
- W2793014366 hasConcept C155542232 @default.
- W2793014366 hasConcept C15744967 @default.
- W2793014366 hasConcept C169760540 @default.
- W2793014366 hasConcept C172849965 @default.
- W2793014366 hasConcept C18762648 @default.
- W2793014366 hasConcept C26760741 @default.
- W2793014366 hasConcept C2779372316 @default.
- W2793014366 hasConcept C31972630 @default.
- W2793014366 hasConcept C41008148 @default.
- W2793014366 hasConcept C66938386 @default.
- W2793014366 hasConcept C76155785 @default.
- W2793014366 hasConcept C78519656 @default.
- W2793014366 hasConcept C87210426 @default.
- W2793014366 hasConceptScore W2793014366C104114177 @default.
- W2793014366 hasConceptScore W2793014366C115961682 @default.
- W2793014366 hasConceptScore W2793014366C121332964 @default.
- W2793014366 hasConceptScore W2793014366C126042441 @default.
- W2793014366 hasConceptScore W2793014366C127413603 @default.
- W2793014366 hasConceptScore W2793014366C1276947 @default.
- W2793014366 hasConceptScore W2793014366C128172907 @default.
- W2793014366 hasConceptScore W2793014366C13662910 @default.
- W2793014366 hasConceptScore W2793014366C15123163 @default.
- W2793014366 hasConceptScore W2793014366C154945302 @default.
- W2793014366 hasConceptScore W2793014366C155542232 @default.
- W2793014366 hasConceptScore W2793014366C15744967 @default.
- W2793014366 hasConceptScore W2793014366C169760540 @default.