Matches in SemOpenAlex for { <https://semopenalex.org/work/W2793057265> ?p ?o ?g. }
- W2793057265 endingPage "707" @default.
- W2793057265 startingPage "680" @default.
- W2793057265 abstract "Abstract Flow in fractured porous media is crucial for production of oil/gas reservoirs and exploitation of geothermal energy. Flow behaviors in such media are mainly dictated by the distribution of fractures. Measuring and inferring the distribution of fractures is subject to large uncertainty, which, in turn, leads to great uncertainty in the prediction of flow behaviors. Inverse modeling with dynamic data may assist to constrain fracture distributions, thus reducing the uncertainty of flow prediction. However, inverse modeling for flow in fractured reservoirs is challenging, owing to the discrete and non‐Gaussian distribution of fractures, as well as strong nonlinearity in the relationship between flow responses and model parameters. In this work, building upon a series of recent advances, an inverse modeling approach is proposed to efficiently update the flow model to match the dynamic data while retaining geological realism in the distribution of fractures. In the approach, the Hough‐transform method is employed to parameterize non‐Gaussian fracture fields with continuous parameter fields, thus rendering desirable properties required by many inverse modeling methods. In addition, a recently developed forward simulation method, the embedded discrete fracture method (EDFM), is utilized to model the fractures. The EDFM maintains computational efficiency while preserving the ability to capture the geometrical details of fractures because the matrix is discretized as structured grid, while the fractures being handled as planes are inserted into the matrix grids. The combination of Hough representation of fractures with the EDFM makes it possible to tune the fractures (through updating their existence, location, orientation, length, and other properties) without requiring either unstructured grids or regridding during updating. Such a treatment is amenable to numerous inverse modeling approaches, such as the iterative inverse modeling method employed in this study, which is capable of dealing with strongly nonlinear problems. A series of numerical case studies with increasing complexity are set up to examine the performance of the proposed approach." @default.
- W2793057265 created "2018-03-29" @default.
- W2793057265 creator A5006705045 @default.
- W2793057265 creator A5052265310 @default.
- W2793057265 creator A5090508999 @default.
- W2793057265 creator A5091725564 @default.
- W2793057265 date "2018-02-01" @default.
- W2793057265 modified "2023-10-14" @default.
- W2793057265 title "Tuning Fractures With Dynamic Data" @default.
- W2793057265 cites W1022352984 @default.
- W2793057265 cites W1971206352 @default.
- W2793057265 cites W1976584025 @default.
- W2793057265 cites W1981907638 @default.
- W2793057265 cites W1985321959 @default.
- W2793057265 cites W1997174216 @default.
- W2793057265 cites W2009233093 @default.
- W2793057265 cites W2018353504 @default.
- W2793057265 cites W2025179796 @default.
- W2793057265 cites W2027056956 @default.
- W2793057265 cites W2050233799 @default.
- W2793057265 cites W2057462553 @default.
- W2793057265 cites W2061266340 @default.
- W2793057265 cites W2062684873 @default.
- W2793057265 cites W2064321848 @default.
- W2793057265 cites W2070114260 @default.
- W2793057265 cites W2081400579 @default.
- W2793057265 cites W2083501255 @default.
- W2793057265 cites W2083501502 @default.
- W2793057265 cites W2087682254 @default.
- W2793057265 cites W2089156852 @default.
- W2793057265 cites W2089726756 @default.
- W2793057265 cites W2091019041 @default.
- W2793057265 cites W2095905764 @default.
- W2793057265 cites W2110766101 @default.
- W2793057265 cites W2114821552 @default.
- W2793057265 cites W2131343962 @default.
- W2793057265 cites W2149742092 @default.
- W2793057265 cites W2157098139 @default.
- W2793057265 cites W2257660352 @default.
- W2793057265 cites W2324474795 @default.
- W2793057265 cites W777608643 @default.
- W2793057265 doi "https://doi.org/10.1002/2017wr022019" @default.
- W2793057265 hasPublicationYear "2018" @default.
- W2793057265 type Work @default.
- W2793057265 sameAs 2793057265 @default.
- W2793057265 citedByCount "18" @default.
- W2793057265 countsByYear W27930572652018 @default.
- W2793057265 countsByYear W27930572652019 @default.
- W2793057265 countsByYear W27930572652020 @default.
- W2793057265 countsByYear W27930572652021 @default.
- W2793057265 countsByYear W27930572652022 @default.
- W2793057265 countsByYear W27930572652023 @default.
- W2793057265 crossrefType "journal-article" @default.
- W2793057265 hasAuthorship W2793057265A5006705045 @default.
- W2793057265 hasAuthorship W2793057265A5052265310 @default.
- W2793057265 hasAuthorship W2793057265A5090508999 @default.
- W2793057265 hasAuthorship W2793057265A5091725564 @default.
- W2793057265 hasBestOaLocation W27930572651 @default.
- W2793057265 hasConcept C106487976 @default.
- W2793057265 hasConcept C11413529 @default.
- W2793057265 hasConcept C121332964 @default.
- W2793057265 hasConcept C126255220 @default.
- W2793057265 hasConcept C127313418 @default.
- W2793057265 hasConcept C134306372 @default.
- W2793057265 hasConcept C135252773 @default.
- W2793057265 hasConcept C154945302 @default.
- W2793057265 hasConcept C158622935 @default.
- W2793057265 hasConcept C159985019 @default.
- W2793057265 hasConcept C163716315 @default.
- W2793057265 hasConcept C187320778 @default.
- W2793057265 hasConcept C187691185 @default.
- W2793057265 hasConcept C192562407 @default.
- W2793057265 hasConcept C205711294 @default.
- W2793057265 hasConcept C207467116 @default.
- W2793057265 hasConcept C2524010 @default.
- W2793057265 hasConcept C33923547 @default.
- W2793057265 hasConcept C38349280 @default.
- W2793057265 hasConcept C41008148 @default.
- W2793057265 hasConcept C43369102 @default.
- W2793057265 hasConcept C62520636 @default.
- W2793057265 hasConcept C73000952 @default.
- W2793057265 hasConceptScore W2793057265C106487976 @default.
- W2793057265 hasConceptScore W2793057265C11413529 @default.
- W2793057265 hasConceptScore W2793057265C121332964 @default.
- W2793057265 hasConceptScore W2793057265C126255220 @default.
- W2793057265 hasConceptScore W2793057265C127313418 @default.
- W2793057265 hasConceptScore W2793057265C134306372 @default.
- W2793057265 hasConceptScore W2793057265C135252773 @default.
- W2793057265 hasConceptScore W2793057265C154945302 @default.
- W2793057265 hasConceptScore W2793057265C158622935 @default.
- W2793057265 hasConceptScore W2793057265C159985019 @default.
- W2793057265 hasConceptScore W2793057265C163716315 @default.
- W2793057265 hasConceptScore W2793057265C187320778 @default.
- W2793057265 hasConceptScore W2793057265C187691185 @default.
- W2793057265 hasConceptScore W2793057265C192562407 @default.
- W2793057265 hasConceptScore W2793057265C205711294 @default.
- W2793057265 hasConceptScore W2793057265C207467116 @default.
- W2793057265 hasConceptScore W2793057265C2524010 @default.