Matches in SemOpenAlex for { <https://semopenalex.org/work/W2793111560> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2793111560 endingPage "41" @default.
- W2793111560 startingPage "27" @default.
- W2793111560 abstract "This article describes how for the last few decades, data mining research has had significant progress in a wide spectrum of applications. Research in prediction of multi-domain data sets is a challenging task due to the imbalanced, voluminous, conflicting, and complex nature of data sets. A learning algorithm is the most important technique for solving these problems. The learning algorithms are widely used for classification purposes. But choosing the learners that perform best for data sets of particular domains is a challenging task in data mining. This article provides a comparative performance assessment of various state-of-the-art learning algorithms over multi-domain data sets to search the effective classifier(s) for a particular domain, e.g., artificial, natural, semi-natural, etc. In the present article, a total of 14 real world data sets are selected from University of California, Irvine (UCI) machine learning repository for conducting experiments using three competent individual learners and their hybrid combinations." @default.
- W2793111560 created "2018-03-29" @default.
- W2793111560 creator A5065402629 @default.
- W2793111560 creator A5089921353 @default.
- W2793111560 date "2018-01-01" @default.
- W2793111560 modified "2023-09-25" @default.
- W2793111560 title "Performance Assessment of Learning Algorithms on Multi-Domain Data Sets" @default.
- W2793111560 cites W1492088121 @default.
- W2793111560 cites W1511978914 @default.
- W2793111560 cites W1520593198 @default.
- W2793111560 cites W1579274558 @default.
- W2793111560 cites W1670263352 @default.
- W2793111560 cites W1971505868 @default.
- W2793111560 cites W1982067074 @default.
- W2793111560 cites W2001637353 @default.
- W2793111560 cites W2012510097 @default.
- W2793111560 cites W2014784356 @default.
- W2793111560 cites W2022892187 @default.
- W2793111560 cites W2040287254 @default.
- W2793111560 cites W2064617476 @default.
- W2793111560 cites W2087926565 @default.
- W2793111560 cites W2117230297 @default.
- W2793111560 cites W2155194485 @default.
- W2793111560 cites W2159151568 @default.
- W2793111560 cites W2170178366 @default.
- W2793111560 cites W2240311736 @default.
- W2793111560 cites W2328260251 @default.
- W2793111560 cites W4236137412 @default.
- W2793111560 doi "https://doi.org/10.4018/ijkdb.2018010103" @default.
- W2793111560 hasPublicationYear "2018" @default.
- W2793111560 type Work @default.
- W2793111560 sameAs 2793111560 @default.
- W2793111560 citedByCount "0" @default.
- W2793111560 crossrefType "journal-article" @default.
- W2793111560 hasAuthorship W2793111560A5065402629 @default.
- W2793111560 hasAuthorship W2793111560A5089921353 @default.
- W2793111560 hasConcept C11413529 @default.
- W2793111560 hasConcept C119857082 @default.
- W2793111560 hasConcept C124101348 @default.
- W2793111560 hasConcept C134306372 @default.
- W2793111560 hasConcept C154945302 @default.
- W2793111560 hasConcept C162324750 @default.
- W2793111560 hasConcept C187736073 @default.
- W2793111560 hasConcept C2780451532 @default.
- W2793111560 hasConcept C33923547 @default.
- W2793111560 hasConcept C36503486 @default.
- W2793111560 hasConcept C41008148 @default.
- W2793111560 hasConcept C95623464 @default.
- W2793111560 hasConceptScore W2793111560C11413529 @default.
- W2793111560 hasConceptScore W2793111560C119857082 @default.
- W2793111560 hasConceptScore W2793111560C124101348 @default.
- W2793111560 hasConceptScore W2793111560C134306372 @default.
- W2793111560 hasConceptScore W2793111560C154945302 @default.
- W2793111560 hasConceptScore W2793111560C162324750 @default.
- W2793111560 hasConceptScore W2793111560C187736073 @default.
- W2793111560 hasConceptScore W2793111560C2780451532 @default.
- W2793111560 hasConceptScore W2793111560C33923547 @default.
- W2793111560 hasConceptScore W2793111560C36503486 @default.
- W2793111560 hasConceptScore W2793111560C41008148 @default.
- W2793111560 hasConceptScore W2793111560C95623464 @default.
- W2793111560 hasIssue "1" @default.
- W2793111560 hasLocation W27931115601 @default.
- W2793111560 hasOpenAccess W2793111560 @default.
- W2793111560 hasPrimaryLocation W27931115601 @default.
- W2793111560 hasRelatedWork W2512018286 @default.
- W2793111560 hasRelatedWork W2556319748 @default.
- W2793111560 hasRelatedWork W2891961174 @default.
- W2793111560 hasRelatedWork W2961085424 @default.
- W2793111560 hasRelatedWork W3158264953 @default.
- W2793111560 hasRelatedWork W3200179079 @default.
- W2793111560 hasRelatedWork W4249229055 @default.
- W2793111560 hasRelatedWork W4306674287 @default.
- W2793111560 hasRelatedWork W4310989423 @default.
- W2793111560 hasRelatedWork W4224009465 @default.
- W2793111560 hasVolume "8" @default.
- W2793111560 isParatext "false" @default.
- W2793111560 isRetracted "false" @default.
- W2793111560 magId "2793111560" @default.
- W2793111560 workType "article" @default.