Matches in SemOpenAlex for { <https://semopenalex.org/work/W2793122726> ?p ?o ?g. }
- W2793122726 endingPage "035004" @default.
- W2793122726 startingPage "035004" @default.
- W2793122726 abstract "Delirium is an important syndrome found in patients in the intensive care unit (ICU), however, it is usually under-recognized during treatment. This study was performed to investigate whether delirious patients can be successfully distinguished from non-delirious patients by using heart rate variability (HRV) and machine learning.Electrocardiography data of 140 patients was acquired during daily ICU care, and HRV data were analyzed. Delirium, including its type, severity, and etiologies, was evaluated daily by trained psychiatrists. HRV data and various machine learning algorithms including linear support vector machine (SVM), SVM with radial basis function (RBF) kernels, linear extreme learning machine (ELM), ELM with RBF kernels, linear discriminant analysis, and quadratic discriminant analysis were utilized to distinguish delirium patients from non-delirium patients.HRV data of 4797 ECGs were included, and 39 patients had delirium at least once during their ICU stay. The maximum classification accuracy was acquired using SVM with RBF kernels. Our prediction method based on HRV with machine learning was comparable to previous delirium prediction models using massive amounts of clinical information.Our results show that autonomic alterations could be a significant feature of patients with delirium in the ICU, suggesting the potential for the automatic prediction and early detection of delirium based on HRV with machine learning." @default.
- W2793122726 created "2018-03-29" @default.
- W2793122726 creator A5000066514 @default.
- W2793122726 creator A5002606698 @default.
- W2793122726 creator A5006506966 @default.
- W2793122726 creator A5062346008 @default.
- W2793122726 creator A5066986620 @default.
- W2793122726 creator A5068177065 @default.
- W2793122726 creator A5069366373 @default.
- W2793122726 creator A5071471788 @default.
- W2793122726 creator A5082495705 @default.
- W2793122726 creator A5089506248 @default.
- W2793122726 date "2018-03-27" @default.
- W2793122726 modified "2023-10-01" @default.
- W2793122726 title "Prediction and early detection of delirium in the intensive care unit by using heart rate variability and machine learning" @default.
- W2793122726 cites W1484240941 @default.
- W2793122726 cites W1496266058 @default.
- W2793122726 cites W1549801757 @default.
- W2793122726 cites W1596717185 @default.
- W2793122726 cites W1978201364 @default.
- W2793122726 cites W1987185928 @default.
- W2793122726 cites W1996617304 @default.
- W2793122726 cites W2000364692 @default.
- W2793122726 cites W2005951225 @default.
- W2793122726 cites W2010995986 @default.
- W2793122726 cites W2012660544 @default.
- W2793122726 cites W2018366225 @default.
- W2793122726 cites W2027953236 @default.
- W2793122726 cites W2036056901 @default.
- W2793122726 cites W2037614372 @default.
- W2793122726 cites W2038882699 @default.
- W2793122726 cites W2046864229 @default.
- W2793122726 cites W2051488728 @default.
- W2793122726 cites W2053853941 @default.
- W2793122726 cites W2056503107 @default.
- W2793122726 cites W2060270364 @default.
- W2793122726 cites W2111072639 @default.
- W2793122726 cites W2111885485 @default.
- W2793122726 cites W2123098876 @default.
- W2793122726 cites W2125109199 @default.
- W2793122726 cites W2130271602 @default.
- W2793122726 cites W2156483112 @default.
- W2793122726 cites W2164404494 @default.
- W2793122726 cites W2364448440 @default.
- W2793122726 cites W2624426707 @default.
- W2793122726 cites W2751512870 @default.
- W2793122726 cites W4247665917 @default.
- W2793122726 cites W984596996 @default.
- W2793122726 cites W2026656341 @default.
- W2793122726 doi "https://doi.org/10.1088/1361-6579/aaab07" @default.
- W2793122726 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29376502" @default.
- W2793122726 hasPublicationYear "2018" @default.
- W2793122726 type Work @default.
- W2793122726 sameAs 2793122726 @default.
- W2793122726 citedByCount "34" @default.
- W2793122726 countsByYear W27931227262018 @default.
- W2793122726 countsByYear W27931227262019 @default.
- W2793122726 countsByYear W27931227262020 @default.
- W2793122726 countsByYear W27931227262021 @default.
- W2793122726 countsByYear W27931227262022 @default.
- W2793122726 countsByYear W27931227262023 @default.
- W2793122726 crossrefType "journal-article" @default.
- W2793122726 hasAuthorship W2793122726A5000066514 @default.
- W2793122726 hasAuthorship W2793122726A5002606698 @default.
- W2793122726 hasAuthorship W2793122726A5006506966 @default.
- W2793122726 hasAuthorship W2793122726A5062346008 @default.
- W2793122726 hasAuthorship W2793122726A5066986620 @default.
- W2793122726 hasAuthorship W2793122726A5068177065 @default.
- W2793122726 hasAuthorship W2793122726A5069366373 @default.
- W2793122726 hasAuthorship W2793122726A5071471788 @default.
- W2793122726 hasAuthorship W2793122726A5082495705 @default.
- W2793122726 hasAuthorship W2793122726A5089506248 @default.
- W2793122726 hasConcept C119857082 @default.
- W2793122726 hasConcept C12267149 @default.
- W2793122726 hasConcept C126322002 @default.
- W2793122726 hasConcept C153180895 @default.
- W2793122726 hasConcept C154945302 @default.
- W2793122726 hasConcept C177713679 @default.
- W2793122726 hasConcept C2776376669 @default.
- W2793122726 hasConcept C2777953023 @default.
- W2793122726 hasConcept C2779753318 @default.
- W2793122726 hasConcept C2987404301 @default.
- W2793122726 hasConcept C41008148 @default.
- W2793122726 hasConcept C69738355 @default.
- W2793122726 hasConcept C71635504 @default.
- W2793122726 hasConcept C71924100 @default.
- W2793122726 hasConcept C84393581 @default.
- W2793122726 hasConceptScore W2793122726C119857082 @default.
- W2793122726 hasConceptScore W2793122726C12267149 @default.
- W2793122726 hasConceptScore W2793122726C126322002 @default.
- W2793122726 hasConceptScore W2793122726C153180895 @default.
- W2793122726 hasConceptScore W2793122726C154945302 @default.
- W2793122726 hasConceptScore W2793122726C177713679 @default.
- W2793122726 hasConceptScore W2793122726C2776376669 @default.
- W2793122726 hasConceptScore W2793122726C2777953023 @default.
- W2793122726 hasConceptScore W2793122726C2779753318 @default.
- W2793122726 hasConceptScore W2793122726C2987404301 @default.
- W2793122726 hasConceptScore W2793122726C41008148 @default.