Matches in SemOpenAlex for { <https://semopenalex.org/work/W2793163690> ?p ?o ?g. }
- W2793163690 endingPage "V231" @default.
- W2793163690 startingPage "V215" @default.
- W2793163690 abstract "We have developed a new regularization method for the sparse representation and denoising of seismic data. Our approach is based on two components: a sparse data representation in a learned dictionary and a similarity measure for image patches that is evaluated using the Laplacian matrix of a graph. Dictionary-learning (DL) methods aim to find a data-dependent basis or a frame that admits a sparse data representation while capturing the characteristics of the given data. We have developed two algorithms for DL based on clustering and singular-value decomposition, called the first and second dictionary constructions. Besides using an adapted dictionary, we also consider a similarity measure for the local geometric structures of the seismic data using the Laplacian matrix of a graph. Our method achieves better denoising performance than existing denoising methods, in terms of peak signal-to-noise ratio values and visual estimation of weak-event preservation. Comparisons of experimental results on field data using traditional [Formula: see text]-[Formula: see text] deconvolution (FX-Decon) and curvelet thresholding methods are also provided." @default.
- W2793163690 created "2018-03-29" @default.
- W2793163690 creator A5008141480 @default.
- W2793163690 creator A5059739223 @default.
- W2793163690 creator A5078652354 @default.
- W2793163690 date "2018-05-01" @default.
- W2793163690 modified "2023-10-18" @default.
- W2793163690 title "Sparse graph-regularized dictionary learning for suppressing random seismic noise" @default.
- W2793163690 cites W1488435683 @default.
- W2793163690 cites W1517525610 @default.
- W2793163690 cites W1829774568 @default.
- W2793163690 cites W1971524069 @default.
- W2793163690 cites W1978749115 @default.
- W2793163690 cites W1996070960 @default.
- W2793163690 cites W1996522389 @default.
- W2793163690 cites W1999829977 @default.
- W2793163690 cites W2013913026 @default.
- W2793163690 cites W2016572604 @default.
- W2793163690 cites W2076393573 @default.
- W2793163690 cites W2087028907 @default.
- W2793163690 cites W2088748973 @default.
- W2793163690 cites W2092663520 @default.
- W2793163690 cites W2093762864 @default.
- W2793163690 cites W2095978736 @default.
- W2793163690 cites W2097308346 @default.
- W2793163690 cites W2099242680 @default.
- W2793163690 cites W2100556411 @default.
- W2793163690 cites W2105884433 @default.
- W2793163690 cites W2106746318 @default.
- W2793163690 cites W2113606819 @default.
- W2793163690 cites W2115429828 @default.
- W2793163690 cites W2126922884 @default.
- W2793163690 cites W2132454757 @default.
- W2793163690 cites W2132680427 @default.
- W2793163690 cites W2135660950 @default.
- W2793163690 cites W2140245639 @default.
- W2793163690 cites W2142058898 @default.
- W2793163690 cites W2142085250 @default.
- W2793163690 cites W2147497470 @default.
- W2793163690 cites W2152582233 @default.
- W2793163690 cites W2153663612 @default.
- W2793163690 cites W2157556196 @default.
- W2793163690 cites W2160547390 @default.
- W2793163690 cites W2160814043 @default.
- W2793163690 cites W2170860899 @default.
- W2793163690 cites W2172275395 @default.
- W2793163690 cites W2329945299 @default.
- W2793163690 cites W2517949381 @default.
- W2793163690 cites W2624114522 @default.
- W2793163690 doi "https://doi.org/10.1190/geo2017-0310.1" @default.
- W2793163690 hasPublicationYear "2018" @default.
- W2793163690 type Work @default.
- W2793163690 sameAs 2793163690 @default.
- W2793163690 citedByCount "32" @default.
- W2793163690 countsByYear W27931636902019 @default.
- W2793163690 countsByYear W27931636902020 @default.
- W2793163690 countsByYear W27931636902021 @default.
- W2793163690 countsByYear W27931636902022 @default.
- W2793163690 countsByYear W27931636902023 @default.
- W2793163690 crossrefType "journal-article" @default.
- W2793163690 hasAuthorship W2793163690A5008141480 @default.
- W2793163690 hasAuthorship W2793163690A5059739223 @default.
- W2793163690 hasAuthorship W2793163690A5078652354 @default.
- W2793163690 hasConcept C115178988 @default.
- W2793163690 hasConcept C115961682 @default.
- W2793163690 hasConcept C11727466 @default.
- W2793163690 hasConcept C121332964 @default.
- W2793163690 hasConcept C124066611 @default.
- W2793163690 hasConcept C131720326 @default.
- W2793163690 hasConcept C132525143 @default.
- W2793163690 hasConcept C153180895 @default.
- W2793163690 hasConcept C154771677 @default.
- W2793163690 hasConcept C154945302 @default.
- W2793163690 hasConcept C158693339 @default.
- W2793163690 hasConcept C160920958 @default.
- W2793163690 hasConcept C163294075 @default.
- W2793163690 hasConcept C191178318 @default.
- W2793163690 hasConcept C196216189 @default.
- W2793163690 hasConcept C22789450 @default.
- W2793163690 hasConcept C33923547 @default.
- W2793163690 hasConcept C41008148 @default.
- W2793163690 hasConcept C42355184 @default.
- W2793163690 hasConcept C47432892 @default.
- W2793163690 hasConcept C62520636 @default.
- W2793163690 hasConcept C73555534 @default.
- W2793163690 hasConcept C80444323 @default.
- W2793163690 hasConceptScore W2793163690C115178988 @default.
- W2793163690 hasConceptScore W2793163690C115961682 @default.
- W2793163690 hasConceptScore W2793163690C11727466 @default.
- W2793163690 hasConceptScore W2793163690C121332964 @default.
- W2793163690 hasConceptScore W2793163690C124066611 @default.
- W2793163690 hasConceptScore W2793163690C131720326 @default.
- W2793163690 hasConceptScore W2793163690C132525143 @default.
- W2793163690 hasConceptScore W2793163690C153180895 @default.
- W2793163690 hasConceptScore W2793163690C154771677 @default.
- W2793163690 hasConceptScore W2793163690C154945302 @default.
- W2793163690 hasConceptScore W2793163690C158693339 @default.
- W2793163690 hasConceptScore W2793163690C160920958 @default.