Matches in SemOpenAlex for { <https://semopenalex.org/work/W2793216914> ?p ?o ?g. }
- W2793216914 endingPage "25" @default.
- W2793216914 startingPage "25" @default.
- W2793216914 abstract "Productivity improvements of mammalian cell culture in the production of recombinant proteins have been made by optimizing cell lines, media, and process operation. This led to enhanced titers and process robustness without increasing the cost of the upstream processing (USP); however, a downstream bottleneck remains. In terms of process control improvement, the process analytical technology (PAT) initiative, initiated by the American Food and Drug Administration (FDA), aims to measure, analyze, monitor, and ultimately control all important attributes of a bioprocess. Especially, spectroscopic methods such as Raman or near-infrared spectroscopy enable one to meet these analytical requirements, preferably in-situ. In combination with chemometric techniques like partial least square (PLS) or principal component analysis (PCA), it is possible to generate soft sensors, which estimate process variables based on process and measurement models for the enhanced control of bioprocesses. Macroscopic kinetic models can be used to simulate cell metabolism. These models are able to enhance the process understanding by predicting the dynamic of cells during cultivation. In this article, in-situ turbidity (transmission, 880 nm) and ex-situ Raman spectroscopy (785 nm) measurements are combined with an offline macroscopic Monod kinetic model in order to predict substrate concentrations. Experimental data of Chinese hamster ovary cultivations in bioreactors show a sufficiently linear correlation (R2 ≥ 0.97) between turbidity and total cell concentration. PLS regression of Raman spectra generates a prediction model, which was validated via offline viable cell concentration measurement (RMSE ≤ 13.82, R2 ≥ 0.92). Based on these measurements, the macroscopic Monod model can be used to determine different process attributes, e.g., glucose concentration. In consequence, it is possible to approximately calculate (R2 ≥ 0.96) glucose concentration based on online cell concentration measurements using turbidity or Raman spectroscopy. Future approaches will use these online substrate concentration measurements with turbidity and Raman measurements, in combination with the kinetic model, in order to control the bioprocess in terms of feeding strategies, by employing an open platform communication (OPC) network—either in fed-batch or perfusion mode, integrated into a continuous operation of upstream and downstream." @default.
- W2793216914 created "2018-03-29" @default.
- W2793216914 creator A5044900422 @default.
- W2793216914 creator A5051418330 @default.
- W2793216914 date "2018-03-16" @default.
- W2793216914 modified "2023-10-17" @default.
- W2793216914 title "Process Analytical Technology for Advanced Process Control in Biologics Manufacturing with the Aid of Macroscopic Kinetic Modeling" @default.
- W2793216914 cites W1773665598 @default.
- W2793216914 cites W1868738225 @default.
- W2793216914 cites W1964257826 @default.
- W2793216914 cites W1976208842 @default.
- W2793216914 cites W1987572064 @default.
- W2793216914 cites W1993598516 @default.
- W2793216914 cites W1993964662 @default.
- W2793216914 cites W2006947259 @default.
- W2793216914 cites W2018727351 @default.
- W2793216914 cites W2021308621 @default.
- W2793216914 cites W2027263110 @default.
- W2793216914 cites W2031475240 @default.
- W2793216914 cites W2031556861 @default.
- W2793216914 cites W2034643133 @default.
- W2793216914 cites W2035530007 @default.
- W2793216914 cites W2039529202 @default.
- W2793216914 cites W2052859646 @default.
- W2793216914 cites W2053825030 @default.
- W2793216914 cites W2055512591 @default.
- W2793216914 cites W2057328981 @default.
- W2793216914 cites W2072940360 @default.
- W2793216914 cites W2085488202 @default.
- W2793216914 cites W2091004417 @default.
- W2793216914 cites W2091713101 @default.
- W2793216914 cites W2098201181 @default.
- W2793216914 cites W2100508150 @default.
- W2793216914 cites W2100578096 @default.
- W2793216914 cites W2102729277 @default.
- W2793216914 cites W2106091764 @default.
- W2793216914 cites W2118540273 @default.
- W2793216914 cites W2123954892 @default.
- W2793216914 cites W2231307160 @default.
- W2793216914 cites W2258718742 @default.
- W2793216914 cites W2283041470 @default.
- W2793216914 cites W2291035445 @default.
- W2793216914 cites W2313321315 @default.
- W2793216914 cites W2497039129 @default.
- W2793216914 cites W2498896723 @default.
- W2793216914 cites W2551002910 @default.
- W2793216914 cites W2580420256 @default.
- W2793216914 cites W2618036898 @default.
- W2793216914 cites W2736303938 @default.
- W2793216914 cites W2743515921 @default.
- W2793216914 cites W2756082568 @default.
- W2793216914 cites W2763881719 @default.
- W2793216914 cites W2773250274 @default.
- W2793216914 cites W78402352 @default.
- W2793216914 doi "https://doi.org/10.3390/bioengineering5010025" @default.
- W2793216914 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5874891" @default.
- W2793216914 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29547557" @default.
- W2793216914 hasPublicationYear "2018" @default.
- W2793216914 type Work @default.
- W2793216914 sameAs 2793216914 @default.
- W2793216914 citedByCount "39" @default.
- W2793216914 countsByYear W27932169142018 @default.
- W2793216914 countsByYear W27932169142019 @default.
- W2793216914 countsByYear W27932169142020 @default.
- W2793216914 countsByYear W27932169142021 @default.
- W2793216914 countsByYear W27932169142022 @default.
- W2793216914 countsByYear W27932169142023 @default.
- W2793216914 crossrefType "journal-article" @default.
- W2793216914 hasAuthorship W2793216914A5044900422 @default.
- W2793216914 hasAuthorship W2793216914A5051418330 @default.
- W2793216914 hasBestOaLocation W27932169141 @default.
- W2793216914 hasConcept C111919701 @default.
- W2793216914 hasConcept C119857082 @default.
- W2793216914 hasConcept C120665830 @default.
- W2793216914 hasConcept C121332964 @default.
- W2793216914 hasConcept C127413603 @default.
- W2793216914 hasConcept C149635348 @default.
- W2793216914 hasConcept C154945302 @default.
- W2793216914 hasConcept C155386361 @default.
- W2793216914 hasConcept C157978775 @default.
- W2793216914 hasConcept C170493617 @default.
- W2793216914 hasConcept C175656101 @default.
- W2793216914 hasConcept C178144697 @default.
- W2793216914 hasConcept C185592680 @default.
- W2793216914 hasConcept C186060115 @default.
- W2793216914 hasConcept C21880701 @default.
- W2793216914 hasConcept C22354355 @default.
- W2793216914 hasConcept C27438332 @default.
- W2793216914 hasConcept C2780513914 @default.
- W2793216914 hasConcept C39432304 @default.
- W2793216914 hasConcept C40003534 @default.
- W2793216914 hasConcept C41008148 @default.
- W2793216914 hasConcept C42360764 @default.
- W2793216914 hasConcept C4916135 @default.
- W2793216914 hasConcept C55493867 @default.
- W2793216914 hasConcept C86803240 @default.
- W2793216914 hasConcept C98045186 @default.
- W2793216914 hasConceptScore W2793216914C111919701 @default.